GUÍA DE PRÁCTICA CLÍNICA GPC

Diagnóstico y tratamiento de la Acidosis Tubular Renal en pacientes pediátricos

EVIDENCIAS Y RECOMENDACIONES
CATÁLOGO MAESTRO DE GUIAS DE PRÁCTICA CLÍNICA: SS-255-16
Esta guía de práctica clínica fue elaborada con la participación de las instituciones que conforman el Sistema Nacional de Salud, bajo la coordinación del Centro Nacional de Excelencia Tecnológica en Salud. Los autores han hecho un esfuerzo por asegurarse de que la información aquí contenida sea completa y actual; por lo que asumen la responsabilidad editorial por el contenido de esta guía, declaran que no tienen conflicto de intereses y en caso de haberlo lo han manifestado puntualmente, de tal manera que no se afecte su participación y la confiabilidad de las evidencias y recomendaciones.

Las recomendaciones son de carácter general, por lo que no definen un curso único de conducta en un procedimiento o tratamiento. Las recomendaciones aquí establecidas, al ser aplicadas en la práctica, podrían tener variaciones justificadas con fundamento en el juicio clínico de quien las emplea como referencia, así como en las necesidades específicas y preferencias de cada paciente en particular, los recursos disponibles al momento de la atención y la normatividad establecida por cada Institución o área de práctica.

En cumplimiento de los artículos 28 y 29 de la Ley General de Salud; 50 del Reglamento Interior de la Comisión Interinstitucional del Cuadro Básico y Catálogo de Insumos del Sector Salud y Primero del Acuerdo por el que se establece que las dependencias y entidades de la Administración Pública Federal que prestan servicios de salud aplicarán, para el primer nivel de atención médica, el cuadro básico y, en el segundo y tercer niveles, el catálogo de insumos, las recomendaciones contenidas en las GPC con relación a la prescripción de fármacos y biotecnológicos deberán aplicarse con apego a los cuadros básicos de cada Institución.

Este documento puede reproducirse libremente sin autorización escrita, con fines de enseñanza y actividades no lucrativas, dentro del Sistema Nacional de Salud. Queda prohibido todo acto por virtud del cual el Usuario pueda explotar o servirse comercialmente, directa o indirectamente, en su totalidad o parcialmente, o beneficiarse, directa o indirectamente, con lucro, de cualquiera de los contenidos, imágenes, formas, índices y demás expresiones formales que sean parte del mismo, incluyendo la modificación o inserción de textos o logotipos.

En la integración de esta Guía de Práctica Clínica se ha considerado integrar la perspectiva de género utilizando un lenguaje incluyente que permita mostrar las diferencias por sexo (femenino y masculino), edad (niños y niñas, los/las jóvenes, población adulta y adulto mayor) y condición social, con el objetivo de promover la igualdad y equidad así como el respeto a los derechos humanos en atención a la salud.

CIE-10: N25.8 OTROS TRASTORNOS RESULTANTES DE LA FUNCIÓN RENAL ALTERADA ACIDOSIS TUBULAR RENAL

GPC: DIAGNóstICO Y TRATAMIENTO DE LA ACIDOSIS TUBULAR RENAL EN PACIENTES PEDIÁTRICOS

COORDINACIÓN, AUTORÍA Y VALIDACIÓN 2016

COORDINACIÓN

<table>
<thead>
<tr>
<th>Dra. María Alejandra Aguilar Kitsu</th>
<th>Nefrología pediátrica</th>
<th>Instituto Mexicano del Seguro Social (IMSS)</th>
<th>Jefa del servicio del departamento de Nefrología. Unidad Medica de Alta Especialidad (UMAE) Hospital de Pediatría Dr. Silvestre Frenk Freund Centro Médico Nacional (CMN) Siglo XXI</th>
</tr>
</thead>
</table>

| Dr. Arturo Ramírez Rivera | Pediatría | CENETEC-Salud IMSS | Subdirector de Guías de Práctica Clínica |

| Dr. Jaime Enoc Zambrano Guerrero | Cirugía general | CENETEC-Salud | Adscrito al área de Evaluación de Tecnologías en Salud |

AUTORÍA

<table>
<thead>
<tr>
<th>Dra. María Alejandra Aguilar Kitsu</th>
<th>Nefrología pediátrica</th>
<th>IMSS</th>
<th>Jefa de servicio del departamento de Nefrología. UMAE Hospital de Pediatría Dr. Silvestre Frenk Freund CMN Siglo XXI</th>
</tr>
</thead>
</table>

| Dr. Silvestre García de la Puente | Nefrología pediátrica | Instituto Nacional de Pediatría (INP) | Jefe del departamento de metodología de la investigación |

| Dra. Aurora Bojórquez Ochoa | Nefrología pediátrica | INP | Jefe del servicio de nefrología pediátrica |

| Dra. Norma Elizabeth Guerra Hernández | Nefrología pediátrica | IMSS | Adscrita al servicio de nefrología pediátrica UMAE Hospital General Dr. Gaudencio González Garza CMN La Raza |

| Dra. Circe Gómez Tenorio | Nefrología pediátrica | IMSS | Jefa del departamento de nefrología pediátrica UMAE Hospital General |

4
<table>
<thead>
<tr>
<th>Nombre</th>
<th>Especialidad</th>
<th>Institución</th>
<th>Puesto o rol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. José Carlos Romo Vázquez</td>
<td>Nefrología pediátrica</td>
<td>Hospital Infantil de México Federico Gómez (HIMFG)</td>
<td>Jefe del departamento de nefrología pediátrica</td>
</tr>
<tr>
<td>Dra. Irma Esther del Moral Espinosa</td>
<td>Nefrología pediátrica</td>
<td>HIMFG</td>
<td>Médica adscrita al servicio de nefrología pediátrica</td>
</tr>
<tr>
<td>Dra. Verónica Reséndiz Núñez</td>
<td>Nefrología pediátrica</td>
<td>Centro Regional de Alta Especialidad de Chiapas</td>
<td>Jefa de servicios clínicos del Hospital de Especialidades Pediátricas</td>
</tr>
</tbody>
</table>

VALIDACIÓN

Protocolo de Búsqueda

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Especialidad</th>
<th>Institución</th>
<th>Puesto o rol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lic. V. Beatriz Ayala Robles</td>
<td>Bibliotecología</td>
<td>Instituto Nacional de Enfermedades Respiratorias</td>
<td>Jefa de la biblioteca Dr. Horacio Rubio Palacios</td>
</tr>
</tbody>
</table>

Guía de Práctica Clínica

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Especialidad</th>
<th>Institución</th>
<th>Puesto o rol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dra. Karen Dublán García</td>
<td>Nefrología pediátrica</td>
<td>IMSS</td>
<td>Médica adscrita al servicio de nefrología pediátrica del Hospital General de Zona No. 1, Durango</td>
</tr>
<tr>
<td>Dra. María Dolores Camargo Muñiz</td>
<td>Nefrología pediátrica</td>
<td>IMSS</td>
<td>Médica adscrita al servicio de nefrología pediátrica de la UMAE Hospital de Especialidades No. 25, CMN del Noreste</td>
</tr>
<tr>
<td>ÍNDICE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Clasificación.. 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Preguntas a responder ... 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Aspectos Generales... 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1.</td>
<td>Justificación.. 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.</td>
<td>Objetivo.. 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.</td>
<td>Definición.. 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Evidencias y Recomendaciones.. 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.</td>
<td>Diagnóstico.. 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.1.</td>
<td>Consideraciones generales y etiología.................................. 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.2.</td>
<td>Diagnóstico clínico.. 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.3.</td>
<td>Estudio paraclínico.. 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.3.1.</td>
<td>Gasometría... 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.3.2.</td>
<td>Química sanguínea.. 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.3.2.1.</td>
<td>Electroliitos séricos... 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.3.2.2.</td>
<td>Creatinina.. 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.3.3.</td>
<td>Análisis urinario... 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.3.4.</td>
<td>Ultrasonografía... 34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.3.5.</td>
<td>Pruebas especiales... 35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.3.5.1.</td>
<td>Pruebas de acidificación urinaria... 35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.4.</td>
<td>Complicaciones de la acidosis tubular renal........................ 37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.</td>
<td>Tratamiento.. 38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.1.</td>
<td>Generalidades.. 38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.2.</td>
<td>Complicaciones del tratamiento.. 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Anexos... 42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.</td>
<td>Protocolo de Búsqueda... 42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.1.</td>
<td>Estrategia de búsqueda... 42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.1.1.</td>
<td>Primera Etapa... 42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.1.2.</td>
<td>Segunda Etapa.. 44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.1.3.</td>
<td>Tercera Etapa.. 47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2.</td>
<td>Escalas de Gradación.. 48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3.</td>
<td>Cuadros y figuras... 49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4.</td>
<td>Diagramas de Flujo... 58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5.</td>
<td>Listado de Recursos.. 59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5.1.</td>
<td>Tabla de Medicamentos.. 59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6.</td>
<td>Cédula de Verificación de Apego a las Recomendaciones Clave de la Guía de Práctica Clínica... 62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Glosario.. 63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Bibliografía... 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Agradecimientos... 68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Comité Académico.. 69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Directorio Sectorial y del Centro Desarrollador.................. 70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Comité Nacional de Guías de Práctica Clínica...................... 71</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Clasificación

CATÁLOGO MAESTRO: SS-255-16

<table>
<thead>
<tr>
<th>Profesionales de la salud</th>
<th>Nefróloga(o) pediatra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clasificación de la enfermedad</td>
<td>CIE-10: N25.8 Otros trastornos resultantes de la función tubular renal alterada. Acidosis Tubular Renal</td>
</tr>
<tr>
<td>Categoría de GPC</td>
<td>Primer, segundo y tercer nivel de atención</td>
</tr>
<tr>
<td>Usuarios potenciales</td>
<td>Medicina general, medicina familiar, pediatras, gastroenterología pediátrica, endocrinología pediátrica, nefrología pediátrica</td>
</tr>
<tr>
<td>Tipo de organización desarrolladora</td>
<td>Secretaría de Salud Instituto Nacional de Pediatría Hospital Infantil de México Federico Gómez Hospital de Especialidades Pediátricas de Tuxtla Gutiérrez, Chiapas</td>
</tr>
<tr>
<td></td>
<td>Instituto Mexicano del Seguro Social UMAE Hospital de Pediatría Dr. Silvestre Frenk Freund, CMN Siglo XXI UMAE Hospital General Dr. Gaudencio González Garza, CMN La Raza</td>
</tr>
<tr>
<td>Población blanco</td>
<td>Niños y niñas de 0 a 18 años de edad</td>
</tr>
<tr>
<td>Fuente de financiamiento / Patrocinador</td>
<td>Secretaría de Salud Instituto Nacional de Pediatría Hospital Infantil de México Federico Gómez Hospital de Especialidades Pediátricas de Tuxtla Gutiérrez, Chiapas</td>
</tr>
<tr>
<td></td>
<td>Instituto Mexicano del Seguro Social UMAE Hospital de Pediatría Dr. Silvestre Frenk Freund, CMN Siglo XXI UMAE Hospital General Dr. Gaudencio González Garza, CMN La Raza</td>
</tr>
<tr>
<td>Intervenciones y actividades consideradas</td>
<td>CIE-9MC: Medición de gases en sangre venosa mixta, 89.66. Medición de gases en sangre arterial sistémica, 89.65. Otras mediciones de aparato genitourinario no operatorias (aclaramiento renal, examen elemental de orina y bioquímica urinaria), 89.29. Ultrasonografía diagnóstica del aparato urinario, 88.75. Audiometría, 95.41, Edad ósea, 88.33</td>
</tr>
<tr>
<td>Impacto esperado en salud</td>
<td>Disminuir complicaciones de la acidosis tubular renal, entre ellas nefrocalcinosis, raquitisimo e insuficiencia renal crónica. Mejorar el crecimiento del niño con acidosis tubular renal Evitar tratamiento innecesario por un diagnóstico incorrecto</td>
</tr>
<tr>
<td>Metodología</td>
<td>Adopción o elaboración de la Guía de Práctica Clínica: de las preguntas a responder y conversión a preguntas clínicas estructuradas, búsqueda y revisión sistemática de la literatura, recuperación de guías internacionales o meta análisis, ensayos clínicos aleatorizados, o estudios observacionales publicados que den respuesta a las preguntas planteadas, de los cuales se seleccionarán las fuentes con mayor puntaje obtenido en la evaluación de su metodología y las de mayor nivel en cuanto a gradación de evidencias y recomendaciones de acuerdo con la escala.</td>
</tr>
<tr>
<td>Método de integración</td>
<td>Métodos empleados para colectar y seleccionar evidencia: Protocolo sistematizado de búsqueda: Algoritmo de búsqueda reproducible en bases de datos electrónicas, en centros elaboradores o compiladores de guías, de revisiones sistemáticas, meta análisis, en sitios Web especializados y búsqueda manual de la literatura. Número de fuentes documentales utilizadas: 115 Guías seleccionadas: 1 Revisiones sistemáticas: 0 Ensayos clínicos aleatorizados: 0 Estudios observacionales: 36 Otras fuentes seleccionadas: 78</td>
</tr>
<tr>
<td>Conflicto de interés</td>
<td>Todos los miembros del grupo de trabajo han declarado la ausencia de conflictos de interés.</td>
</tr>
<tr>
<td>Actualización</td>
<td>Fecha de publicación: 03/noviembre/2016 Esta guía será actualizada cuando exista evidencia que así lo determine o de manera programada, a los 3 a 5 años posteriores a la publicación.</td>
</tr>
</tbody>
</table>

1 Para mayor información sobre los aspectos metodológicos empleados en la construcción de esta guía se puede contactar al CENETEC- Salud a través de su portal http://www.cenetec.salud.gob.mx/.
2. **PREGUNTAS A RESPONDER**

1. ¿Cuándo sospechar acidosis tubular renal en niños?
2. ¿Cuáles son los criterios diagnósticos de talla baja o falla en el crecimiento?
3. ¿Cuáles son los valores diagnósticos de acidosis metabólica hiperclorémica en niños?
4. ¿Cuáles son los métodos para diagnosticar acidosis metabólica hiperclorémica?
5. ¿Qué enfermedades pueden cursar con acidosis tubular renal?
6. ¿Cuáles exámenes de laboratorio son útiles para confirmar el diagnóstico de acidosis tubular renal?
7. ¿Cuáles son los criterios diagnósticos de acidosis tubular?
8. ¿Cómo se clasifica la acidosis tubular renal?
9. ¿Cuáles son los tratamientos recomendados para la acidosis tubular renal?
10. ¿Cuáles son las complicaciones de la acidosis tubular renal?
11. ¿Cuáles son las complicaciones más frecuentes de los tratamientos para acidosis tubular renal?
3. Aspectos Generales

3.1. Justificación

La acidosis tubular renal (ATR), es una patología de la cual no se tienen datos estadísticos de su prevalencia e incidencia en México. A nivel mundial es una patología muy poco frecuente, en España se estima solo seis casos comprobados de las formas hereditarias en una población de 47 millones de habitantes.

La ATR es una entidad clínica en la cual el paciente desarrolla una acidosis metabólica debido a distintos trastornos en el túbulo renal. La acidosis metabólica se refiere al mecanismo fisiopatogénico que da origen a la disminución del bicarbonato sérico (HCO₃⁻) con un pH menor de 7.4. Cuando los mecanismos de compensación para mantener el pH en límites normales (7.35 a 7.4) son ineficaces se presenta la acidosis metabólica descompensada (Paulev P, 2005).

La ATR en niños está relacionada con defectos hereditarios, o adquiridos, que afectan la habilidad del riñón para absorber HCO₃⁻, o excretar amonio o ácido.

- Acidosis tubular renal distal (tipo 1)
 - Relacionada a un defecto en la acidificación urinaria distal con presencia de un pH urinario elevado (>5.5 en acidosis metabólica sistémica)
- Acidosis tubular renal proximal (tipo 2)
 - Producido por un defecto en la reabsorción del HCO₃⁻ filtrado
 - Puede presentarse como una entidad aislada o más frecuentemente asociada a otras anomalías tubulares (síndrome de Fanconi).
- Acidosis tubular renal mixta (tipo 3)
 - Comparte características de los tipos 1 y 2
- Acidosis tubular renal hipercalemática (tipo 4)
 - Relacionado con falla en la amonio-genesis
 - Deficiencia o resistencia a la aldosterona

(Cuadro 1)

Los tipos más frecuentes en la edad pediátrica son los 1 y 2 (distal y proximal), pero es posible encontrar los otros tipos de ATR.

La ATR tipo 1 es resultado de la incapacidad de secretar la carga de ácido diaria. En ausencia de tratamiento con soluciones alcalinizantes, la retención de iones hidrógeno, de forma progresiva, lleva a una disminución de la concentración de HCO₃⁻ plasmático.
La ATR tipo 2 es causada por reducción de la capacidad reabsortiva de HCO₃⁻ por el túbulo proximal, resultando en una disminución del HCO₃⁻ sérico. La ATR tipo 2 puede presentarse en su forma aislada, la cuál se presenta raramente o formando parte del síndrome de Fanconi. La falla tubular relacionada al síndrome de Fanconi es caracterizada por hipofosfatemia acompañada de hiperfosfaturia, hiperuricosuria, glucosuria con glucosa sérica normal, aminoaciduria, proteinuria tubular y acidosis tubular renal.

En la ATR tipo 3, se encuentra una alteración genética de tipo autosómico recesivo que afecta tanto de forma distal como proximal, ligado a una deficiencia de la anhidrasa carbónica tipo II. Este tipo de ATR parece tener mayor relación a un síndrome con calcificaciones cerebrales, llamado Guibaud-Vainsel, y tiene asociación con dismorfismo facial y pérdida auditiva conductiva.

El hipoaldosteronismo, al que está relacionado la ATR tipo 4, tiene como consecuencia una hipercaliemia característicamente asociada a acidosis metabólica (García-de-la-Puente S, 2006; Rodríguez-Soriano J, 2002; Gil-Peña H, 2014).

Debido a la controversia que ha surgido de la hipótesis del sobrediagnóstico de la ATR en niños en nuestro país, generada por la falta de homogeneidad de los criterios diagnósticos y a la diversidad en los recursos en las diferentes instituciones, aunado a los avances en el diagnóstico molecular de las formas genéticas y a la existencia de variedades secundarias, e incompletas de ATR es necesaria la realización de una guía de práctica clínica que permita a los pediatras, gastroenterólogos pediatras, endocrinólogos pediatras y nefrólogos pediatras estandarizar criterios y estudios diagnósticos para disminuir el riesgo de complicaciones a largo plazo con la detección temprana y oportuna de todas las variedades de ATR en el país.
3.2. Objetivo

La Guía de Práctica Clínica Diagnóstico y tratamiento de la Acidosis Tubular Renal en pacientes pediátricos forma parte de las guías que integran el Catálogo Maestro de Guías de Práctica Clínica, el cual se instrumenta a través del Programa de Acción Específico: Evaluación y Gestión de Tecnologías para la Salud, de acuerdo con las estrategias y líneas de acción que considera el Programa Nacional de Salud 2013-2018.

La finalidad de este catálogo es establecer un referente nacional para orientar la toma de decisiones clínicas basadas en recomendaciones sustentadas en la mejor evidencia disponible.

Esta guía pone a disposición del personal del primer, segundo y tercer nivel de atención las recomendaciones basadas en la mejor evidencia disponible con la intención de estandarizar las acciones nacionales acerca de:

- **Unificar los criterios diagnósticos de la acidosis tubular renal en niños**
- **Otorgar tratamiento oportuno a los pacientes con diagnóstico de acidosis tubular renal**
- **Disminuir el riesgo de complicaciones**
- **Referir de forma oportuna al nefrólogo pediatra**

Lo anterior favorecerá la mejora en la efectividad, seguridad y calidad de la atención médica contribuyendo, de esta manera, al bienestar de las personas y de las comunidades, el cual constituye el objetivo central y la razón de ser de los servicios de salud.
3.3. Definición

La ATR es una entidad clínica causada por un grupo de defectos en la reabsorción de bicarbonato (HCO₃⁻) en el túbulo proximal o en la secreción de iones hidrógeno (H⁺) en el túbulo distal o ambos; se caracteriza por acidosis metabólica hiperclorémica con brecha aniónica (BA) sérica normal y filtración glomerular normal o ligeramente disminuida (en donde la acidosis es desproporcionada a la disminución del filtrado glomerular), en ausencia de otro trastorno ácido-base (Rodríguez-Soriano J, 2002).
4. EVIDENCIAS Y RECOMENDACIONES

Las recomendaciones señaladas en esta guía son producto del análisis de las fuentes de información obtenidas mediante el modelo de revisión sistemática de la literatura. La presentación de las Evidencias y Recomendaciones expresadas corresponde a la información disponible y organizada según criterios relacionados con las características cuantitativas, cualitativas, de diseño y tipo de resultados de los estudios que las originaron.

Las Evidencias y Recomendaciones provenientes de las guías utilizadas como documento base se gradaron de acuerdo a la escala original utilizada por cada una. En caso de Evidencias y Recomendaciones desarrolladas a partir de otro tipo de estudios, los autores utilizaron las escalas: **SIGN.**

Símbolos empleados en las tablas de Evidencias y Recomendaciones de esta guía:

- **Evidencia**
- **Recomendación**
- **Punto de buena práctica**

En la columna correspondiente al nivel de Evidencia y Recomendación, el número o letra representan la calidad de la Evidencia o fuerza de la Recomendación, especificando debajo la escala de gradación empleada; el primer apellido e inicial del primer nombre del primer autor y el año de publicación identifica a la referencia bibliográfica de donde se obtuvo la información, como se observa en el ejemplo siguiente:

<table>
<thead>
<tr>
<th>EVIDENCIA / RECOMENDACIÓN</th>
<th>NIVEL / GRADO</th>
</tr>
</thead>
</table>
| |
| La valoración del riesgo para el desarrollo de UPP a través de la escala de “BRADEN” tiene una capacidad predictiva superior al juicio clínico del personal de salud. |
4.1. Diagnóstico

4.1.1. Consideraciones generales y etiología

<table>
<thead>
<tr>
<th>EVIDENCIA / RECOMENDACIÓN</th>
<th>NIVEL / GRADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>2+</td>
</tr>
<tr>
<td>Con base a criterios clínicos y fisiopatológicos la ATR se clasifica en</td>
<td>SIGN</td>
</tr>
<tr>
<td>• ATR distal o tipo 1</td>
<td>Vargas-Poussou R, 2006</td>
</tr>
<tr>
<td>• ATR proximal o tipo 2</td>
<td>4</td>
</tr>
<tr>
<td>• ATR mixta o tipo 3</td>
<td>SIGN</td>
</tr>
<tr>
<td>• ATR hipercaleílica o tipo 4</td>
<td>Rodríguez-Soriano J, 2002</td>
</tr>
<tr>
<td>(Cuadro 1)</td>
<td>Gil-Peña H, 2014</td>
</tr>
<tr>
<td>E</td>
<td>2+</td>
</tr>
<tr>
<td>Considerando la etiología de la ATR puede clasificarse en:</td>
<td>SIGN</td>
</tr>
<tr>
<td>• Primaria:</td>
<td>Etezadi F, 2012</td>
</tr>
<tr>
<td>○ Con defectos genéticos conocidos</td>
<td>3</td>
</tr>
<tr>
<td>○ Sin defectos genéticos conocidos</td>
<td>SIGN</td>
</tr>
<tr>
<td>• Secundaria:</td>
<td>Kanq S, 2012</td>
</tr>
<tr>
<td>○ Medicamentos</td>
<td>Karunaratne S, 2012</td>
</tr>
<tr>
<td>○ Tóxicos</td>
<td>Walsh S, 2007</td>
</tr>
<tr>
<td>○ Enfermedades:</td>
<td></td>
</tr>
<tr>
<td>• Genéticas</td>
<td></td>
</tr>
<tr>
<td>• Inmunológicas</td>
<td></td>
</tr>
<tr>
<td>• Renales</td>
<td></td>
</tr>
<tr>
<td>• Urológicos (malformaciones urinarias)</td>
<td></td>
</tr>
<tr>
<td>○ Del metabolismo de calcio</td>
<td></td>
</tr>
<tr>
<td>○ Trasplante renal</td>
<td></td>
</tr>
<tr>
<td>(Cuadro 2 y 3)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Una vez establecido el diagnóstico de ATR se sugiere determinar la causa (primaria o secundaria), así como el sitio del defecto (proximal, distal o mixto).</td>
<td>SIGN</td>
</tr>
<tr>
<td></td>
<td>Etezadi F, 2012</td>
</tr>
<tr>
<td></td>
<td>Kanq S, 2012</td>
</tr>
<tr>
<td></td>
<td>Walsh S, 2007</td>
</tr>
<tr>
<td></td>
<td>Karunaratne S, 2012</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Se sugiere que los pacientes, con enfermedades genéticas o adquiridas, que presenten riesgo de presentar ATR, sean valorados de forma intencionalada en búsqueda de esta.</td>
<td>SIGN</td>
</tr>
<tr>
<td></td>
<td>Etezadi F, 2012</td>
</tr>
<tr>
<td></td>
<td>Kanq S, 2012</td>
</tr>
<tr>
<td></td>
<td>Walsh S, 2007</td>
</tr>
<tr>
<td></td>
<td>Karunaratne S, 2012</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Existe relación de ATR tipo 1 con enfermedades autoinmunes, mas frecuentemente con el Síndrome de Sjögren, con una prevalencia estimada hasta del 25%.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pereira P, 2009</td>
</tr>
<tr>
<td></td>
<td>Alper S, 2010</td>
</tr>
<tr>
<td>E</td>
<td>Otras enfermedades autoinmunes relacionadas con ATR tipo 1 son:</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>• Lupus eritematoso sistémico</td>
</tr>
<tr>
<td></td>
<td>• Hipergamaglobulinemia</td>
</tr>
<tr>
<td></td>
<td>• Cirrosis biliar primaria</td>
</tr>
<tr>
<td></td>
<td>• Tiroiditis autoinmune</td>
</tr>
<tr>
<td></td>
<td>• Hepatitis autoinmune</td>
</tr>
</tbody>
</table>

3 SIGN
Akin D, 2014
Rastegar A, 2011
Komatsuda A, 2010

4 SIGN
Pereira P, 2009
Alper S, 2010

<table>
<thead>
<tr>
<th>E</th>
<th>La anfotericina B puede inducir ATR tipo 1 al incrementar la permeabilidad en el túbulo colector que favorece la caliuresis y la disminución de la secreción de H+, sin embargo, más frecuentemente se presenta diabetes insípida nefrogénica en combinación o no con ATR tipo 1, todo ello relacionado a la concentración intratubular de la anfotericina.</th>
</tr>
</thead>
</table>

(Cuadro 1 y 3)

4 SIGN
Kitterer D, 2014
Salter M, 2013

<table>
<thead>
<tr>
<th>R</th>
<th>Se sugiere considerar el diagnóstico de ATR tipo 1 en pacientes con antecedentes de enfermedades autoinmunes descritas, así como con la administración de medicamentos relacionados al riesgo de desarrollar este tipo de ATR.</th>
</tr>
</thead>
</table>

D SIGN
Akin D, 2014
Rastegar A, 2011
Komatsuda A, 2010
Pereira P, 2009
Alper S, 2010
Kitterer D, 2014
Salter M, 2013

<table>
<thead>
<tr>
<th>E</th>
<th>La primera descripción de acidosis tubular renal incompleta (ATRI) fue hecha a partir del reporte de tres pacientes con nefrocalcinosis, pero sin hipercalemia ni acidosis metabólica, hecha por Wrong y Davis en 1959. La ATRi se caracteriza por:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Ausencia de acidosis metabólica</td>
</tr>
<tr>
<td></td>
<td>• Defecto en la excreción renal de ácido (demostrado por la incapacidad de reducir el pH urinario por debajo de 5.5, con la prueba de amonio o de furosemide modificada)</td>
</tr>
</tbody>
</table>

2+ SIGN
Sharma A, 2009
Oduwole A, 2010
Pongchaiyakul C, 2004

3 SIGN
Wrong O, 1959
Sharma A, 2007
Choi J, 2011

4 SIGN
Wrong O, 2012
Pereira P, 2009
Lainq C, 2005

<table>
<thead>
<tr>
<th>E</th>
<th>La ATRi se caracteriza por los siguientes hallazgos clínicos:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Retraso en el crecimiento</td>
</tr>
<tr>
<td></td>
<td>• Raquitismo</td>
</tr>
<tr>
<td></td>
<td>• Nefrocalcinosis</td>
</tr>
</tbody>
</table>

3 SIGN
Sharma A, 2007
Jha R, 2011
Choi J, 2011
| **E** | Bicarbonato sérico normal
| | Hipercalcioria
| | Hipocitraturia
| | **4**
| | SIGN
| | **Both T, 2014**
| **E** | En la ATRi, los efectos clínicos secundarios se limitan a:
| | • Nefrolitiasis
| | • Nefrocalcinosis
| | Así como, recientemente, se ha encontrado relación entre la ATRi y osteopenia y osteoporosis, en la edad adulta.
| | **2+**
| | SIGN
| | **Sharma A, 2009**
| | **3**
| | **SIGN**
| | **Jha R, 2011**
| | **Basak R, 2011**
| **E** | Se han reportado como causas frecuentes de ATR tipo 1 y ATRi las siguientes:
| | • Niños.
| | Alteraciones urológicas:
| | ○ Valvas uretrales
| | ○ Reflujo vesicoureteral (RVU)
| | ○ Estenosis uretero-vesical
| | ○ Estenosis uretero-piéllica
| | ○ Vejiga neurogénica
| | • Adultos.
| | Enfermedades autoinmunes:
| | ○ Hiperparatiroidismo primario
| | **2+**
| | SIGN
| | **Sharma A, 2009**
| | **Domrongkitchaiporn S, 2002**
| | **Guizar J, 1996**
| | **3**
| | **SIGN**
| | **Jha R, 2011**
| | **Sharma A, 2007**
| | **Komatsuda A, 2010**
| **E** | El RVU es una de las alteraciones congénitas más frecuentes del tracto urinario, ocurriendo en 1 de cada 250 recién nacidos vivos.
| | **2+**
| | SIGN
| | **Guizar J, 1996**
| **E** | En un estudio de cohorte realizado en Guanajuato, México, que incluyó 18 niños de 4 a 15 años de edad con RVU, se demostró con pruebas de acidificación tubular, la presencia de ATRi en el 50% de ellos; y se evidenció asociación significativa con la duración del reflujo y un menor tamaño renal por ultrasonografía.
| | **2+**
| | SIGN
| | **Guizar J, 1996**
| **E** | En niños con valvas uretrales posteriores, se evidenció en algunos estudios, la presencia de ATR en 53% a 73% de los casos, de los cuales 18% a 22% correspondieron al tipo 1, y 34% a 50% a ATRi, encontrando una relación más fuerte con aquellos en donde se realizó procedimiento correctivo en edad tardía y los que presentaban RVU bilateral. Agregado a ello, la persistencia de la ATR tipo 1, después de la cirugía, se asocia a mayor prevalencia de daño renal.
| | **2+**
| | SIGN
| | **Sharma R, 2001**
| | **3**
| | **SIGN**
| | **Jha R, 2011**
| | **Sharma A, 2007**

16
| R | En caso de contar con alteraciones urológicas, o alguna otra condición de riesgo para presentar ATRi, se recomienda descartar daño tubular por medio de estudios pertinentes, así como la corrección del defecto lo más pronto posible. | C SIGN | Sharma R, 2001
Guizar J, 1996
Sharma A, 2007
Jha R, 2011 |
| R | Se sugiere sospechar de ATRi en pacientes con talla baja, nefrocalciosis, raquitismo, osteopenia, uropatía obstructiva o historia familiar positiva para ATR, asociados a gasometría normal. | C SIGN | Sharma R, 2001
Guizar J, 1996
Sharma A, 2007
Jha R, 2011
Choi J, 2011
Both T, 2014 |
| E | Se ha descrito la presencia de ATRi en 38% de los pacientes con raquitismo nutricional, estos se caracterizan por:
- Raquitismo
- Talla baja
- Falta de respuesta a tratamiento con calcio y vitamina D | 2+ SIGN | Oduwole A, 2010
3 SIGN | Sharma A, 2007
Choi J, 2011 |
| E | Los pacientes con ATRi, en pruebas de inducción de acidificación urinaria, presentan inabilidad en la generación de acidez titulable, que se compensa con un exceso en la eliminación de amonio. | 2+ SIGN | Sharma A, 2009
Oduwole A, 2010
3 SIGN | Sharma A, 2007 |
| R | Se recomienda realizar pruebas de acidificación urinaria a todos los pacientes con sospecha de ATRi, valorando de forma específica, la hiperamoniuria. | C SIGN | Sharma A, 2009
Oduwole A, 2010
Sharma A, 2007 |
| E | En pacientes posoperados, para corrección de válvulas ureterales posteriores, que desarrollaron ATR tipo 1 o ATRi, se registraron mayores velocidades de crecimiento, al uso de terapia con HCO₃⁻, en comparación con niñas(os) sin desarrollo de acidosis tubular renal. | 2+ SIGN | Sharma A, 2009 |
| E | Hay datos sugerentes de un tipo de acidosis tubular renal transitoria, que remite en forma paulatina y espontánea, siendo caracterizada por un cuadro de ATR tipo 2. Se ha señalado que puede estar relacionado con un trastorno del cotransportador sodio/HCO₃⁻. | 4 SIGN | Wrong O, 2012
Rodríguez-Soriano J, 2002 |
Debido a que se han observado tasas de crecimiento mayores en las niñas(os) que reciben corrección con HCO₃, se recomienda, la administración de este en niños con ATR posoperados de corrección de válvulas uretrales posteriores.

Hay reportes anecdóticos que mencionan la presencia de acidosis tubular transitoria, pero el grupo sugiere realizar más estudios para documentar o descartar la presencia de acidosis tubular transitoria, ya que la evidencia actual no es suficiente para realizar una conclusión.

Existen reportes de una probable relación entre el virus de la inmunodeficiencia humana (VIH) y la ATR tipo 1, con una prevalencia hasta del 9%, sin embargo todos los niños estaban recibiendo terapia antiretroviral y muchos recibían terapia profiláctica para Pneumocistis sp con trimetoprim-sulfadoxina, medicamentos que se conoce que afectan la función tubular. Además, la hipergamaglobulinemia idiopática ha sido reportada como causa de ATR tipo 1, siendo la infección por VIH la causa más común de esta.

Se recomienda efectuar una historia clínica detallada, en búsqueda de causas secundarias de ATR y en caso de encontrarse infección por VIH, efectuar los estudios de laboratorio y gabinete pertinentes para confirmar o descartar ATR.

Las siguientes son causas de ATR tipo 4, por la inhibición de reabsorción de sodio en el túbulo colector por falla de voltaje negativo intraluminal:

- Deficiencia, resistencia o antagonismo de aldosterona
- Inhibición de renina
- Medicamentos:
 - Antiinflamatorios no esteroideos
 - Heparina
 - Inhibidores o bloqueadores de receptores de angiotensina
 - Diuréticos ahorrores de potasio
 - Espironolactona
 - Amilorida
 - Triamterene
 - Pentamidina
| E | El trimetoprim, comúnmente asociado con sulfametoxazol, puede interferir con la función del canal de sodio epitelial, resultando en hipercaliemia y puede interferir en las enzimas involucradas en la aminogénesis, provocando una disminución de excreción de amoníaco que va acompañada de disminución de excreción de hidrogenión, con presencia de ATR tipo 4 (hipercaliémica). | 4 SIGN | Kitterer D, 2014 |
| R | Se sugiere el uso cauteloso de trimetoprim y sulfametoxazol en niños con factores de riesgo para ATR. | D SIGN | Kitterer D, 2014 |

4.1.2. Diagnóstico clínico

Evidencia / Recomendación

<table>
<thead>
<tr>
<th></th>
<th>La acidosis metabólica afecta en la acción de las siguientes hormonas:</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>- Hormona de crecimiento: supresión de la secreción</td>
</tr>
<tr>
<td></td>
<td>- Factor de crecimiento similar a la insulina tipo I (IGF-I): reducción de los niveles séricos</td>
</tr>
<tr>
<td></td>
<td>- Hormona tiroidea: depresión</td>
</tr>
<tr>
<td></td>
<td>- Glucocorticoides: Incremento de producción</td>
</tr>
<tr>
<td></td>
<td>- Paratohormona (PTH): Incremento de niveles</td>
</tr>
<tr>
<td></td>
<td>- Vitamina D: disminución de la activación</td>
</tr>
<tr>
<td></td>
<td>Mitch W, 2006</td>
</tr>
</tbody>
</table>

E	Se habla de talla baja cuando ésta se sitúa por debajo de 2 desviaciones estándar (DE), o bien por debajo del percentil 3, en las tablas correspondientes para la edad y sexo o cuando la velocidad de crecimiento disminuye de forma sostenida, es decir, inferior al percentil 2S.
	III Shekelle
	GPC-CENETEC-IMSS-510-11

R	El diagnóstico de talla baja debe de realizarse cuando el niño se encuentre 2 DE por debajo de la edad, cuando existan registros por debajo del percentil 3 en la tabla correspondiente para edad y sexo o cuando exista detención del crecimiento.
	C Shekelle
	GPC-CENETEC-IMSS-510-11

E	La talla baja puede ser un hallazgo aislado o el dato clínico de una gran variedad de condiciones patológicas o trastornos heredados.
	III Shekelle
	GPC-CENETEC-IMSS-510-11

R	Se recomienda realizar una exploración física exhaustiva para descartar alteraciones físicas de otras enfermedades que causan alteraciones de crecimiento; por ejemplo, síndrome de Turner.
	C Shekelle
	GPC-CENETEC-IMSS-510-11

E	La correlación de la talla de la niña o del niño con la de sus padres es un aspecto muy importante en la valoración del paciente con talla baja. El cálculo de la talla blanco familiar permite valorar el potencial genético y sospechar una alteración del crecimiento cuando las predicciones de talla se alejan de los valores esperados en forma persistente.
	IV Shekelle
	GPC-CENETEC-IMSS-510-11

E	La velocidad de crecimiento es el parámetro más valioso para evaluar el crecimiento de la niña o el niño, al ser éste un proceso dinámico, una medición aislada no tiene valor, ya que sólo determina la altura en ese momento. Se seguirá esta evolución de la talla en la curva de velocidad de crecimiento que recoge el valor absoluto de los incrementos en intervalos fijos de tiempo, expresándose en cm/año.
	IV Shekelle
	GPC-CENETEC-IMSS-510-11
E	Al encontrar a niños con talla baja, especialmente menores de tres años de edad, se encuentra justificada la realización inmediata de gasometría, debido a la relación entre la acidosis metabólica en pacientes con ATR y la detención de crecimiento.
Mul D, 2010 SIGN	
---	---
R	Considerar, al momento de la evaluación integral, la talla de los padres, y realizar evaluación en seguimiento evitando realizar diagnóstico de talla baja con un solo registro. Se sugiere sospechar ATR una vez descartadas las causas comunes de detención de crecimiento.
Shekelle	
GPC-CENETEC-IMSS-510-11	
R	Para un registro fidedigno de la talla se recomienda:
- En el niño <2 años de edad medir con un infantómetro
- En el niño >2 años de edad con un estadímetro | D
Shekelle
GPC-CENETEC-IMSS-510-11 |
| R | Para complementar el abordaje diagnóstico en niñas(os) con talla baja, el médico pediatra de segundo nivel de atención, deberá solicitar a niñas(os) con talla baja:
- Biometría hemática con diferencial
- Velocidad de sedimentación globular
- Determinación sérica de:
 - Urea
 - Creatinina
 - Gasometría venosa
 - Cloro
 - Sodio
 - Potasio
 - Calcio
 - Fósforo
 - Magnesio
 - Transaminasas
 - Fosfatasa alcalina
- Examen general de orina
- Coproparasitoscópico seriado | D
Shekelle
GPC-CENETEC-IMSS-510-11 |
| R | En el abordaje del paciente con talla baja se requiere la toma de gasometría venosa, en caso de documentarse talla baja con presencia de acidosis metabólica, se sugiere realizar el protocolo de estudio para paciente con ATR. | C
SIGN
Mul D, 2010 |
| E | Los lactantes con ATR, como manifestación inicial, presentan fiebre sin causa aparente, que se corrige con la reposición hídrica. De igual forma, pueden presentar retraso en la dentición. | 2+
Elhayek D, 2013 SIGN
3 |
<table>
<thead>
<tr>
<th></th>
<th>Los pacientes con ATR pueden cursar con fluorosis y defectos en el esmalte dental.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Se sugiere realizar una anamnesis extensa, así como una exploración física exhaustiva, en todos los lactantes que presenten fiebre sin foco infeccioso aparente, sobre todo en aquellos que presenten corrección del síndrome con reposición hídrica y buscar de forma intencionada ATR.</td>
</tr>
<tr>
<td></td>
<td>Otros síntomas presentes en niñas(os) con ATR son:</td>
</tr>
<tr>
<td></td>
<td>• Poliuria</td>
</tr>
<tr>
<td></td>
<td>• Polidipsia</td>
</tr>
<tr>
<td></td>
<td>• Vómito</td>
</tr>
<tr>
<td></td>
<td>• Anorexia</td>
</tr>
<tr>
<td></td>
<td>• Constipación</td>
</tr>
<tr>
<td></td>
<td>• Deshidratación</td>
</tr>
<tr>
<td></td>
<td>• Hipotonía muscular</td>
</tr>
<tr>
<td></td>
<td>• Mialgias</td>
</tr>
<tr>
<td></td>
<td>• Fátiga</td>
</tr>
<tr>
<td></td>
<td>• Parálisis muscular severa</td>
</tr>
<tr>
<td></td>
<td>• Dolor óseo</td>
</tr>
<tr>
<td></td>
<td>• Deformidades óseas</td>
</tr>
<tr>
<td></td>
<td>• Raquitismo</td>
</tr>
</tbody>
</table>

	Cuando se descartaron otras causas más comunes de peso y talla baja, se sugiere sospechar ATR cuando hay presencia de talla baja asociada con otras alteraciones tales como:
	• Poliuria
	• Polidipsia
	• Deshidratación
	• Nefrocalcinosis
	• Sordera
	• Raquitismo
	• Hipotonía muscular
En la ATR, relacionada con patrón hereditario autosómico recesivo, se han reportado las siguientes anomalías en el desarrollo:

- Anormalidades oculares
 - Glaucoma
 - Catarata
 - Queratopatía en banda
- Anormalidades auditivas
 - Hipoacusia neurosensorial
 - Sordera
-Calcificaciones cerebrales
- Retraso mental

La exploración física puede sugerir una alteración genética o malformación renal si existen alteraciones en:

- Pabellones auriculares
- Columna lumbosacra
- Genitales
- Hemihipotrofia fascio corporal
- Cara triangular
- Clinodactilia del quinto dedo

Debido a que la ATR puede ser congénita o secundaria a otras patologías, se recomienda realizar evaluación clínica completa y detallada, teniendo en cuenta las alteraciones morfológicas relacionadas a ATR con patrón hereditario.

En niños con ATR con patrón hereditario se sugiere buscar alteraciones oculares o auditivas de forma intencionada.

La ATR induce manifestaciones sistémicas que incluyen hipercalciiuria y nefrocalcinosis.
La hipocitraturia, presente en la ATR tipo 1, condiciona disminución de la solubilidad del calcio en la orina.
| **E** | La hipocitraturia, agregada a hipercalemia y cambio de pH urinario hacia la alcalinidad, condicionan un mayor riesgo de presentar nefrocalcinosis, la cual es una complicación que se subdiagnostica, y por lo tanto, no tratada a tiempo. |
| **3** | SIGN |
| Rasteqar A, 2011 |
| Elhayek D, 2013 |
| Doğan C, 2013 |
| **4** | SIGN |
| Chan J, 2007 |
| **E** | Cuando existen pH alcalinos urinarios (>7) se presentan depósitos de fosfato cálcico, que facilitan la cristalización. |
| **4** | SIGN |
| Del-Valle E, 2013 |
| **R** | Al ser la nefrocalcinosis una complicación que amerita vigilancia estrecha, se recomienda investigar la presencia de la misma, inmediatamente después de realizar el diagnóstico de ATR. |
| **C** | SIGN |
| Vargas-Poussou R, 2006 |
| Guerra-Hernández N, 2014 |
| Domrongkitchaporn S, 2002 |
| Rasteqar A, 2011 |
| Elhayek D, 2013 |
✓	Se recomienda dar relevancia a los criterios clínicos sobre los hallazgos aislados de laboratorio, teniendo en cuenta que se trata de un síndrome clínico.	**Punto de buena práctica**
✓	Una vez sospechado el diagnóstico de ATR por datos clínicos y la presencia de acidosis metabólica hiperclorémica, con brecha aniónica normal, se sugiere solicitar los siguientes estudios:	
C	**Punto de buena práctica**	
Gasometría venosa (segunda determinación)		
En suero: creatinina, ácido úrico, urea, albúmina, sodio, potasio, cloro, fósforo, calcio		
Examen general de orina y cuantificación en la misma de: creatinina, sodio, potasio, cloro, calcio		
Cálculo de brecha aniónica urinaria		
Cálculo de fracciones excretadas		
Pruebas de acidificación urinaria		
4.1.3. Estudio paraclínico

4.1.3.1. Gasometría

<table>
<thead>
<tr>
<th>EVIDENCIA / RECOMENDACIÓN</th>
<th>NIVEL / GRADO</th>
</tr>
</thead>
</table>
| Parte de las respuestas para compensar el desequilibrio ácido-base, están determinadas por la concentración coordinada de HCO₃⁻ y pCO₂, dependientes de la respuesta respiratoria y renal, la cual comienza en la primera hora y se completa en 12 h a 24 h. | 4 SIGN
Sharma M, 2013
Ring T, 2005 |
| La albúmina constituye la mayor parte de aniones no medibles, por lo que la reducción o incremento en la concentración de albúmina puede alterar la BA. La BA disminuye 2.3 a 2.5mEq/l por cada gramo que disminuya la albúmina sérica, mientras que aumenta a un grado similar con un incremento de la concentración de albúmina. | 4 SIGN
Sharma M, 2013
Kraut J, 2013 |
| En caso de hipoalbuminemia, se sugiere corregir la BA, previa evaluación diagnóstica integral. | 4 SIGN
Sharma M, 2013
Kraut J, 2013 |
| Por cada miliequivalente (mEq) que disminuye la concentración de HCO₃⁻ sérico, la pCO₂ arterial cae 1.2 mmHg. | 4 SIGN
Sharma M, 2013 |
| Para realizar la evaluación correcta de acidosis metabólica, se sugiere hacer gasometría, BA y albúmina. Además de calcular la corrección respiratoria con la fórmula de Winter para poder clasificarla. | 4 SIGN
Sharma M, 2013
Ring T, 2005 |
| La evaluación de cualquier desorden ácido-base debe comenzar con la medición de:
 - pH
 - pCO₂
 - Concentración de HCO₃⁻ (venosa o arterial)
La concentración baja de HCO₃⁻ confirma la acidosis metabólica. | 4 SIGN
Sharma M, 2013 |
| Se recomienda realizar dos gasometrías venosas para fundamentar el diagnóstico de acidosis metabólica, siendo la primera toma al momento de sospecha de ATR y la segunda realizada por el | Punto de buena práctica | | |
| E | La PaCO₂ disminuye a medida que aumenta la altura sobre el nivel del mar por lo que el HCO₃ desciende, de 1 a 1.5 mmol/L por cada kilómetro de altitud. | 3 SIGN | Sánchez-Molina M, 1986 |
| E | Se sugiere considerar la altitud del sitio donde se realizó la toma de muestra para realizar los cálculos pertinentes y obtener la cifra de HCO₃ sérico más adecuada. | C SIGN | Paulev P, 2005 Sharma M, 2013 |
| E | Los pacientes con acidosis metabólica deben clasificarse dentro de 2 categorías basados en la BA. | 4 SIGN | Sharma M, 2013 Kaplan L, 2005 |
| E | La BA distingue 2 tipos de acidosis metabólica:
- Por pérdida o consumo de HCO₃
 - ATR
 - Diarrea
 - Derivaciones urinarias
 - Ileostomías
- Por acúmulo de ácidos orgánicos
 - Insuficiencia renal crónica
 - Acidosis láctica
<p>| R | Se recomienda clasificar a los pacientes con acidosis metabólica, de acuerdo a la BA, teniendo en consideración que una característica de la ATR es presentar una acidosis metabólica con BA normal, con pérdida o consumo de HCO₃. | D SIGN | Emmet M, 2014 Kraut J, 2012 Sharma M, 2013 |
| E | Existe correlación entre los resultados obtenidos de gasometrías de muestras arteriales y venosas, donde se encontró que el pH de sangre venosa es 0.04 menor, la pCO₂ es 5.6 mmHg mayor y el HCO₃ es 0.32 mmol/L mayor. | 2+ SIGN | Middleton P, 2006 Yildizdas D, 2004 |</p>
<table>
<thead>
<tr>
<th></th>
<th>La toma de gasometría arterial conlleva mayor riesgo de complicaciones como: trombosis arterial, lesión de nervios radial o ulnar, entre otras.</th>
<th>Punto de buena práctica</th>
</tr>
</thead>
</table>
| E | En un estudio observacional descriptivo realizado en la Ciudad de México (2240 metros sobre el nivel del mar) con 84 niños sanos se reportaron por rangos de edad las siguientes cifras de HCO₃⁻ en gasometría arterial:
 - 1 a 23 meses de edad: 18.65±1.15 mEq/l
 - 24 meses a 5 años de 11 meses de edad: 18.66±1.37 mEq/l
 - 6 a 16 años de edad: 20.38±1.39 mEq/l
 (Figura 1) | 3 SIGN
 Rangel-Carrillo M, 1975 |
| E | En un estudio observacional descriptivo en niños sanos de San José de Costa Rica (altitud 1300 msnm), se encontraron los siguientes valores de HCO₃⁻:
 - 24 h a 1 año de edad: 17.7±1.96 mmol/l (42 niños)
 - 2 a 5 años de edad: 18.9±1.89 mmol/l (76 niños)
 - 6 a 12 años de edad: 20.5±1.28 mmol/l (82 niños)
 - 13 a 17 años de edad: 21.9±1.47 mmol/l (40 niños)
 (Cuadro 8 y figura 1) | 3 SIGN
 Sánchez-Molina M, 1986 |
| E | En un estudio de cohorte de 528 niños realizado en Australia, de cuatro años de seguimiento, se midieron 37 variables de laboratorio, de donde se extraen los siguientes valores de HCO₃⁻ en niñas(os):
 - 8 años de edad: 18 a 28 mmol/l (mediana 22)
 - 10 años de edad: 19 a 26 mmol/l (mediana 22)
 - 12 años de edad: 20 a 27 mmol/l (mediana 24)
 | 2+ SIGN
 Southcott E, 2010 |
| E | La Clínica Mayo realizó un estudio en los hijas(os) de sus trabajadores, que no tuviesen enfermedades crónicas o agudas, se describieron los siguientes rangos de valor para HCO₃⁻:
 - 17 a 25 mEq/l
 - Niños de 1 a <3 años de edad
 - Niñas de 1 a <4 años de edad
 | 3 SIGN
 Burritt M, 1990 |
| **E** | La cuantificación de HCO₃ obtenida por el análisis en gasometría venosa, presenta rangos de valores superiores a los obtenidos por química sanguínea en autoanalizador, ya sea que la muestra se guarde en hielo, con heparina o a temperatura ambiente. Esto aparenta estar relacionado con buffers eritrocitarios, aunque el grupo de estudio fue pequeño, y no se contó con estandarización de características de la población, que permitan un análisis confiable. | 3 SIGN |
| Adedoyin O, 2003 |

| **E** | No se demostraron cambios significativos al almacenamiento de la muestra venosa para análisis de HCO₃ por química sanguínea de rutina, a las 0, 2 y 4 horas, ya sea bajo temperatura ambiente, con uso de heparina o en hielo. | 3 SIGN |
| Adedoyin O, 2003 |

| **R** | Es recomendable utilizar gasometría venosa para la determinación de HCO₃, considerando los ajustes pertinentes de acuerdo a la edad y a la altura del nivel del mar. | D SIGN |
| Rangel-Carrillo M, 1975 |
| Sánchez-Molina M, 1986 |
| Burrit M, 1990 |
| Southcott E, 2010 |

✓	Para realizar el diagnóstico de acidosis metabólica se recomienda tomar como referencia los siguientes valores de HCO₃ sérico por edad:
	- < 2 años de edad: <18 mEq/l
	- De 2 a 5 años de edad: <19 mEq/l
	- >5 años: <20 mEq/l
	Punto de buena práctica

| **✓** | Recomendamos efectuar diagnóstico de acidosis metabólica hiperclorémica por medio de gasometrías seriadas (2 tomas independientes). | **Punto de buena práctica** |
4.1.3.2. Química sanguínea

4.1.3.2.1. Electrolitos séricos

<table>
<thead>
<tr>
<th>Evidencia / Recomendación</th>
<th>Nivel / Grado</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Clínica Mayo realizó un estudio en hijas(os) de sus trabajadores que no tuviesen enfermedades crónicas o agudas, donde se encontró que los intervalos de referencia para cloro sérico fueron, para niños de 1 a <18 años de edad de 102 a 112 mEq/mL</td>
<td>3 SIGN Burrit M, 1990</td>
</tr>
</tbody>
</table>
| **E** | El sodio sérico habitualmente se encuentra normal, pero puede encontrarse disminuido en casos de acidosis tubular renal tipo 4. | **2+ SIGN**
Kirejczyk J, 2014
4
SIGN
Baqa A, 2007
Gil-Peña H, 2014
Chan J, 2007 |
|---|---|---|
| **E** | El potasio sérico aumenta en acidosis debido a la difusión del mismo al espacio intracelular, por intercambio con hidrógeno. **(Cuadro 7)** | **2+ SIGN**
Kirejczyk J, 2014
4
SIGN
Baqa A, 2007
Gil-Peña H, 2014
Chan J, 2007 |
| **E** | El fósforo sérico generalmente es normal pero está disminuido en casos de ATR tipo 2 secundaria a síndrome de Fanconi. | **2+ SIGN**
Hsu S, 2005 |
| **E** | El calcio habitualmente es normal, sin embargo puede estar bajo en casos de deficiencia o resistencia de vitamina D. | **4 SIGN**
Baqa A, 2007
Gil-Peña H, 2014
Chan J, 2007 |
| **R** | En caso de sospecha de ATR se debe realizar mediciones séricas de cloro, sodio, potasio, calcio y fósforo, ya que se deben de documentar las alteraciones de forma individual, además de ser necesarias para el cálculo de la brecha aniónica. | **B SIGN**
Hsu S, 2005
Kirejczyk J, 2014
Burritt M, 1990 |

Punto de buena práctica

Previa verificación de que no existan patologías que causen acidosis metabólica hiperclorémica como: diarrea crónica, presencia de ileostomía o ureterosigmoidostomía, se recomienda el abordaje con examenes de laboratorio para ATR en pacientes con evidencia de talla baja, con o sin otros datos clínicos sugestivos, y realizar el diagnóstico de ATR si existe la presencia simultánea de los cuatro parámetros siguientes:

- **pH < 7.37**
- **HCO₃:**
 - < 18 mEq/l en < 2 años de edad
 - < 19 mEq/l de 2 a 5 años de edad
 - < 20 mEq/l en > 5 años de edad
- Brecha aniónica sérica 8 a 16
- Cloro sérico > 110 mEq/l
4.1.3.2.2 Creatinina

<table>
<thead>
<tr>
<th>EVIDENCIA / RECOMENDACIÓN</th>
<th>NIVEL / GRADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>La creatinina habitualmente es normal, pero en nefritis intersticial o en nefropatía obstructiva, que cursan con ATR secundaria, puede estar ligeramente elevada.</td>
<td>4 SIGN</td>
</tr>
<tr>
<td></td>
<td>Bagga A, 2007</td>
</tr>
<tr>
<td></td>
<td>Gil-Peña H, 2014</td>
</tr>
<tr>
<td></td>
<td>Chan J, 2007</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Para obtener los índices urinarios y las fracciones excretadas de HCO₃ y fosfato, se requiere la cuantificación de creatinina en sangre y en orina, para el cálculo.</td>
<td>4 SIGN</td>
</tr>
<tr>
<td></td>
<td>Bagga A, 2007</td>
</tr>
<tr>
<td></td>
<td>(Cuadro 5)</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Realizar cuantificación de creatinina para obtener las fracciones excretadas de HCO₃ y fosfato, teniendo en consideración que está se encuentra generalmente en límites normales en ATR.</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Bagga A, 2007</td>
</tr>
<tr>
<td></td>
<td>Gil-Peña H, 2014</td>
</tr>
<tr>
<td></td>
<td>Chan J, 2007</td>
</tr>
</tbody>
</table>

4.1.3.3 Análisis urinario

<table>
<thead>
<tr>
<th>EVIDENCIA / RECOMENDACIÓN</th>
<th>NIVEL / GRADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>El pH urinario puede ayudar a diferenciar el tipo de ATR en casi todos los casos:</td>
<td>2+</td>
</tr>
<tr>
<td>➢ ATR tipo 2</td>
<td>SIGN</td>
</tr>
<tr>
<td>• HCO₃ sérico bajo (sin tratamiento): pH ≤5.5</td>
<td>Kirejczyk J, 2014</td>
</tr>
<tr>
<td>• HCO₃ sérico normal con tratamiento: pH >7 y bicarbonaturia</td>
<td>4</td>
</tr>
<tr>
<td>➢ ATR tipo 1</td>
<td>SIGN</td>
</tr>
<tr>
<td>• pH >6</td>
<td>Bagga A, 2007</td>
</tr>
<tr>
<td>• Independiente del HCO₃ sérico</td>
<td>Gil-Peña H, 2014</td>
</tr>
<tr>
<td>➢ ATR tipo 4</td>
<td>Chan J, 2007</td>
</tr>
<tr>
<td>• pH <5.5 en acidosis</td>
<td></td>
</tr>
<tr>
<td>• pH >6 con HCO₃ normal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Cuadro 7)</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>En el sedimento urinario de los pacientes con ATR se pueden encontrar cristales de oxalato o fosfato cálcico en caso de existir hipercaleciuria.</td>
<td>2+</td>
</tr>
<tr>
<td></td>
<td>SIGN</td>
</tr>
<tr>
<td></td>
<td>Kirejczyk J, 2014</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Bagga A, 2007</td>
</tr>
<tr>
<td></td>
<td>Gil-Peña H, 2014</td>
</tr>
<tr>
<td></td>
<td>Chan J, 2007</td>
</tr>
<tr>
<td>E</td>
<td>La densidad urinaria puede estar disminuida en casos de ATR secundaria a:</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
</tbody>
</table>
| | - Nefritis intersticial
| | - Nefropatía obstructiva
| | - Algunas causas de síndrome de Fanconi |
| **2+** | **SIGN**
| **Kirejczyk J, 2014**
| **4** | **SIGN**
| **Baqqa A, 2007**
| **Gil-Peña H, 2014**
| **Chan J, 2007** |

Cuadro 7

<table>
<thead>
<tr>
<th>E</th>
<th>La determinación urinaria de HCO₃, Na, K, Cl, Ca, y creatinina debe efectuarse en muestra de orina fresca matutina, con mediciones simultáneas de los mismos analitos en sangre o suero, determinando la fracción excretada de HCO₃⁻.</th>
</tr>
</thead>
</table>
| **4** | **SIGN**
| **García-de-la-Puente S, 2006** |

Cuadro 7

<table>
<thead>
<tr>
<th>E</th>
<th>El Ca urinario se determina con el fin de valorar si existe hipercalemia, la cual se observa frecuentemente en la ATR tipo 1, y es causa de nefrocalcinosis.</th>
</tr>
</thead>
</table>
| **4** | **SIGN**
| **Baqqa A, 2007**
| **Porowsky T, 2013** |

| **E** | Se utiliza la relación calcio/creatinina (Ca/Cr), que es un índice que se obtiene dividiendo la concentración urinaria de Ca en mg/dl, sobre la concentración urinaria de creatinina en mg/dl.
El límite superior normal es en:
- 0 a 6 meses: >0.8
- 7 a 11 meses: >0.6
- 1 a 2 años: >0.47
- 2 años: >0.21
- Preescolares de 0.3
- Adultos y escolares de 0.2 |
|-------|--|
| **2+** | **SIGN**
| **Sáez-Torres C, 2014** |
| **4** | **SIGN**
| **Baqqa A, 2007** |

<table>
<thead>
<tr>
<th>E</th>
<th>En niños mayores de 1 año de edad, en recolección de orina de 24 horas, se considera hipercalemia valores mayores de 4 mg/kg/día.</th>
</tr>
</thead>
</table>
| **2+** | **SIGN**
| **Sáez-Torres C, 2014** |

<table>
<thead>
<tr>
<th>E</th>
<th>En niños con ATR tipo 1 se sugiere realizar valoración del índice calcio/creatinina de forma semestral en presencia de nefrocalcinosis.</th>
</tr>
</thead>
</table>
| **C** | **SIGN**
| **Sáez-Torres C, 2014** |

| **E** | El valor normal esperado de la eliminación urinaria de bicarbonato es menor al 2%.
Para clasificar la ATR, es necesario calcular la eliminación urinaria de bicarbonato.
(Cuadro 5 y 10) |
|-------|--|
| **4** | **SIGN**
| **Baqqa A, 2007**
| **Gil-Peña H, 2014**
| **Chan J, 2007** |
| E | Los valores de la fracción excretada de HCO₃ urinario variarán de acuerdo al tipo ATR. Para poder clasificarla son:
 - ATR tipos 1 y 4: valores < 5%
 - ATR tipo 2:
 - Con administración de HCO₃ y HCO₃ sérico normal, valores >10%
 - Sin administración de HCO₃, valores <5%
 - ATR tipo 3: valores >5%
 (Cuadro 5) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Para el diagnóstico de ATR tipo 2, se realiza la prueba de fracción excretada de HCO₃, la cual requiere de la administración de HCO₃ para lograr niveles séricos de HCO₃ de 20 a 22 mEq/l, si la fracción excretada es mayor de 10%, se confirma el diagnóstico.</td>
</tr>
<tr>
<td>E</td>
<td>En pacientes con acidosis metabólica aumenta la excreción de amonio acompañada de aumento en el cloro urinario, por lo que es necesario calcular la brecha aniónica urinaria (BAu) para determinar, en forma indirecta, la concentración de amonio. En casos de acidosis tubular tipo 4, no hay suficiente producción de amonio y el cloro urinario es bajo; de tal forma que cuando la brecha aniónica urinaria presenta valor negativo, existirá una excreción suficiente de amonio y lo contrario cuando tiene un valor positivo.</td>
</tr>
<tr>
<td>R</td>
<td>En sospecha de ATR, se sugiere realizar el cálculo de la BAu, en presencia de acidosis metabólica hiperclorémica.</td>
</tr>
<tr>
<td>E</td>
<td>En cuanto a los electrolitos urinarios, con ATR tipo 1 la excreción urinaria de sodio y potasio se encuentran elevadas, y para ATR tipo 4 la eliminación urinaria de potasio disminuye y se eleva la de sodio.</td>
</tr>
</tbody>
</table>
| E | En presencia de hipocalcemia, un potasio urinario mayor de 20, o una fracción excretada mayor de 40%, indica pérdidas renales de potasio las cuales se se observan en ATR tipo 1, tipo 3 y frecuentemente en tipo 2, en cambio, en presencia de hipercalemia, un potasio urinario menor de 20, o una fracción excretada de potasio menor de 10%, indica retención urinaria de potasio, lo cual se encuentra en ATR tipo 4.
 (Cuadro 5) |
| R | En caso de trastorno de potasio sérico se sugiere realizar fracciones excretadas para identificar el problema tubular desencadenante. | D
Bagga A, 2007
Gil-Peña H, 2014
Chan J, 2007 |
| E | Se habla de hipocitraturia cuando el índice citrato/creatinina es <400 mg/g o cuando en la recolección de orina de 24 horas se obtengan cifras <8 mg/kg/día. | 2+
Sáez-Torres C, 2014 |
| (Cuadro 7) |
| R | En pacientes con sospecha de ATR tipo 1 se sugiere evaluar los niveles de citrato en orina | C
Sáez-Torres C, 2014 |

4.1.3.4. Ultrasonografía

<table>
<thead>
<tr>
<th>EVIDENCIA / RECOMENDACIÓN</th>
<th>NIVEL / GRADO</th>
</tr>
</thead>
</table>
| E | El diagnóstico de ATR debe incluir ultrasonido renal para detectar calcificaciones renales, litos renales, e investigar causas secundarias como uropatía obstructiva, nefropatía por refluo y nefritis túbulo-intestinal crónica. También es útil para llevar el seguimiento de nefrocalcinosis. | 4
SIGN
Chan J, 2007
García-de-la-Puente S, 2006
Bagga A, 2005 |
| E | La nefrocalcinosis identificada durante las primeras semanas de vida, es irreversible. La nefropatía intersticial grave secundaria a nefrocalcinosis puede preceder a una insuficiencia renal crónica poliúrica, complicación rara observada en 1 de cada 18 casos de ATR tipo 1 diagnosticado durante la infancia (en seguimiento de 2 a 18.5 años). | 4
SIGN
Bajpai A, 2005 |
| R | En todo paciente con ATR se recomienda descartar la presencia o desarrollo de nefrocalcinosis con ultrasonografía, a partir del momento del diagnóstico. Así mismo, evidenciar causas secundarias como uropatía obstructiva, nefropatía por refluo, entre otras. | D
SIGN
Chan JCM, 2007
García-de-la-Puente S, 2006
Bagga A, 2005
Bagga A, 2007
Gillespie R, 2004 |
| | Se sugiere realizar ultrasonido renal de forma anual en ATR tipo 1. | Punto de buena práctica |
4.1.3.5. **Pruebas especiales**

4.1.3.5.1. Pruebas de acidificación urinaria

<table>
<thead>
<tr>
<th>EVIDENCIA / RECOMENDACIÓN</th>
<th>NIVEL / GRADO</th>
</tr>
</thead>
</table>
| **E** Las pruebas de acidificación urinaria permiten identificar el defecto característico en la ATR tipo 1. | 3 SIGN
Jha R, 2011
Gil-Peña H, 2014
Rodríguez-Soriano J, 2002
Chan J, 2007 |
| **E** Las pruebas de acidificación urinaria están indicadas en casos cuyo diagnóstico está en duda, y en donde los valores de HCO₃ y cloro se encuentren limítrofes y existan datos clínicos de sospecha de acidosis tubular renal | 3 SIGN
Jha R, 2011
Gil-Peña H, 2014
Rodríguez-Soriano J, 2002
Chan J, 2007 |
| **R** En pacientes con HCO₃ limítrofe o con duda diagnóstica, se deberá realizar pruebas confirmatorias, como prueba de acidificación urinaria por el nefrólogo pediatra. (Cuadro 6) | **D** SIGN
Jha R, 2011
Gil-Peña H, 2014
Rodríguez-Soriano J, 2002 |
| **E** Con las pruebas de acidificación urinaria se valora el pH urinario así como la excreción urinaria de iones H⁺ (amonio y acidez titulable) a través de diferentes estímulos:
- Furosemide
- Furosemide más fludrocortisona
- Acetazolamida
- Cloruro de amonio | 3 SIGN
Jha R, 2011
Gil-Peña H, 2014
Rodríguez-Soriano J, 2002
Chan J, 2007 |
| **E** Prueba con furosemida y furosemida con fludrocortisona:
- El pH urinario menor a 5.32 descarta acidosis tubular renal distal | 3 SIGN
Jha R, 2011
Pela I, 2007
Gil-Peña H, 2014
Rodríguez-Soriano J, 2002
Chan J, 2007 |

(Cuadro 4)
Medición de pCO₂ urinaria máxima (prueba con infusión de HCO₃, acetazolamida o ambas):
- El valor normal para la pCO₂ urinaria máxima se considerara >60 a 70 mm Hg, con un gradiente pCO₂ orina-plasma >20 a 30 mmHg, valores por debajo de estos, apoyan el diagnóstico de ATR distal.

(Cuadro 4 y 7)

Jha R, 2011
4 SIGN
Gil-Peña H, 2014
Rodríguez-Soriano J, 2002

La prueba de furosemide con fludrocortisona posee ciertas ventajas sobre la prueba de cloruro de amonio ya que tiene la misma efectividad para identificar a los pacientes con ATR tipo 1 que no acidifican orina, además que posee menos efectos adversos, siendo muy importante esta consideración, ya que los pacientes abandonan la prueba de acidificación por cloruro de amonio, por la presencia de náusea o vómito. Además, aparenta ser que, la prueba de furosemide con fludrocortisona, se puede finalizar en menos tiempo (90% de los pacientes sometidos a esta prueba tuvieron pH<5.3 a las 3 horas o menos).

Walsh S, 2007
3 SIGN

Para confirmar el diagnóstico de ATR tipo 1, las pruebas de furosemide y furosemide con fludrocortisona son muy sensibles pero poco específicas. De éstas, la prueba de furosemide con fludrocortisona da menos falsos positivos, pero en este momento la fludrocortisona no se encuentra disponible en México, aunque por su simplicidad se recomienda como primera prueba. De presentarse pH urinario menor de 5.3 se sugiere descartar ATR distal. Si el pH urinario es igual o mayor de 5.3 se recomienda realizar, como prueba confirmatoria, la pCO₂ urinaria máxima.

(Cuadro 4)

Jha R, 2011
Pela I, 2007
Gil-Peña H, 2014
Rodríguez-Soriano J, 2002
Chan J, 2007
García-de-la-Puente S, 2006

En pacientes con sospecha de ATRi, realizar pruebas de acidificación urinaria.

Punto de buena práctica

En pacientes con sospecha de ATR con ausencia de acidosis metabólica con pH urinario alcalino y síntomas clínicos relacionados a ATR, se recomienda realizar pruebas de acidificación urinaria para confirmar o descartar la sospecha diagnóstica.

Punto de buena práctica
4.1.4. Complicaciones de la acidosis tubular renal

<table>
<thead>
<tr>
<th>EVIDENCIA / RECOMENDACIÓN</th>
<th>NIVEL / GRADO</th>
</tr>
</thead>
</table>
| **E** Las complicaciones de la ATR se deben principalmente al retraso en el diagnóstico y del tratamiento, e incluyen:
 - Retraso del crecimiento
 - Nefrocalcínosis
 - Litiasis
 - Dolor óseo
 - Raquitismo
 - Osteomalacia
 - Osteoporosis
 En casos graves pueden presentarse fracturas patológicas.
| 2+
| SIGN
| Sharma A, 2009
| Sharma R, 2001
| 3
| SIGN
| Almeida L, 2010
| Derakhshian A, 2007
| Jha R, 2011
| Basak R, 2011
| Lee J, 2013
| 4
| SIGN
| Gil-Peña H, 2014
| Chan J, 2007
| Wrong O, 2012 |
| **E** Agregado a la acidosis metabólica sistémica crónica, los siguientes factores presentes en ATR, contribuyen al retraso en el crecimiento y desarrollo:
 - Emesis frecuente
 - Diarrea crónica
 - Hipocalcemia
 - Hipotonía muscular
 - Anorexia
| 4
| SIGN
| Gil-Peña H, 2014
| Chan J, 2007 |
| **E** En pacientes con ATR tipo 1 se han reportado las siguientes complicaciones:
 - Nefrocalcínosis
 - Parálisis hipocaliémica
 - Enfermedad renal crónica
 - Hipercalcioria
| 3
| SIGN
| Sharma A, 2007
| 4
| SIGN
| Bajpai A, 2005
| Srivastava T, 2007
| Rodríguez-Soriano J, 2002
| Bresolin N, 2005 |
| **E** Recientemente se ha reportado alta prevalencia de osteoporosis en adultos con ATR tipo 1.
| 2+
| SIGN
| Sharma A, 2009
| Sharma R, 2001 |
| **R** Para evitar complicaciones, se sugiere realizar un diagnóstico oportuno e iniciar tratamiento de forma inmediata y mantener niveles de HCO₃ adecuados, con soluciones alcalinizantes, al tener el diagnóstico de ATR.
| D
| SIGN
| Gil-Peña H, 2014
| Chan J, 2007
<p>| Bajpai A, 2005 |</p>
<table>
<thead>
<tr>
<th>EVIDENCIA / RECOMENDACIÓN</th>
<th>NIVEL / GRADO</th>
</tr>
</thead>
</table>
| Cuando se corrobora el diagnóstico de acidosis tubular renal, el tratamiento inicial se realiza con soluciones alcalinizantes a dosis de 1 a 7 mEq/kg/día. (Cuadro 10) | **3**
SIGN
Dehoorne J, 2003
4
SIGN
Bouzidi H, 2009
Cho SG, 2013 |
| La dosis habitual requerida de HCO₃, de acuerdo al tipo de acidosis tubular renal, es:
- ATR tipo 1: 3 a 5 mEq/kg/día
- ATR tipo 2: 10 a 15 mEq/kg/día
| **4**
SIGN
García-de-la-Puente S, 2006
Golembiewska E, 2012 |
| La cantidad de HCO₃ requerida típicamente disminuye con la edad:
- Lactantes 5 a 8mEq/kg/día
- Niños 3 a 4 mEq/kg/día
- Adultos de 1 a 2 mEq/kg/día | **4**
SIGN
Gil-Peña H, 2014
García-de-la-Puente S, 2006
Golembiewska E, 2012 |
| Se recomienda usar HCO₃ de sodio o potasio a dosis inicial de 1 a 2 mEq/kg/día e ir aumentando paulatinamente hasta llegar a niveles de HCO₃ sérico >20 mEq/l en niños de <2 años de edad y >22 mEq/l en niños >2 años de edad. (Cuadro 10) | **D**
SIGN
Golembiewska H, 2014
García-de-la-Puente S, 2006
Gil-Peña H, 2014 |
| En la ATR tipo 2 se incrementa la dosis progresivamente hasta 14 mEq/kg/día, debido a las altas pérdidas de HCO₃ en el túbulo proximal. | **4**
SIGN
Chan J, 2007 |
| El tratamiento para la ATR tipo 4 la dosis de HCO₃ utilizada va de 1.5 a 2 mEq/kg/día. | **4**
SIGN
Chan J, 2007 |
| | En pacientes con ATR tipo 1 con hiponatremia, la corrección del nivel de potasio se realizó con dosis de citrato de potasio en 4 mEq/kg/día. La administración del citrato de potasio reduce de forma significativa la excreción urinaria de calcio y fosfato, con lo cual la producción de litos se ve reducida. | 4
Domrongkitchaiporn S, 2002 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Se recomienda utilizar solución de citratos en pacientes con ATR tipo 1, preferentemente citrato de potasio, en presencia de hipercalemoria o hipocitraturia.</td>
</tr>
</tbody>
</table>
D
Domrongkitchaiporn S, 2002 |
| | La meta a alcanzar en el tratamiento de la acidosis tubular renal, con soluciones alcalinizantes, de acuerdo a edad, es: | 3
Dehoorne J, 2003
4
Gil-Peña H, 2014
Bajpai A, 2005
Haque S, 2012 |
| | • 0 a 2 años: >20 mEq/l
• >2 años: >22 mEq/l | |
| | Se sugiere mantener los niveles de HCO₃ en 22 mEq/l para asegurar crecimiento y evitar complicaciones. |
D
Dehoorne J, 2003
Gil-Peña H, 2014
Bajpai A, 2005
Haque S, 2012 |
| | El HCO₃ puede mezclarse con jugos o bebidas saborizadas para mejorar el sabor y tolerancia oral. | 4
Cho S, 2013
Muñoz-Arizpe R, 2013
Del-Valle E, 2013 |
| | En caso de documentarse ATR con nefrocalcinosis, se recomienda dar solución de citrato de potasio. |
(Duadro 10)
Muñoz-Arizpe R, 2013
Del-Valle E, 2013 |
| | Durante el tratamiento de la ATR tipo 2, la bicarbonaturia produce pérdidas de sodio y potasio. | 4
García-de-la-Puente S, 2006
Haque S, 2012 |
| | Para evitar hiponatremia e hiponatremia, en la ATR tipo 2, se sugiere administrar una mezcla de HCO₃ de potasio y sodio. De integrarse el síndrome de Fanconi, además de administrar solución alcalinizante, se recomienda que |
C
Hsu S, 2005 |
el tratamiento incluya cápsulas o solución de fosfatos, acompañado de calcitriol.

(Cuadro 10)

<table>
<thead>
<tr>
<th>Punto de buena práctica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se sugiere no suspender el tratamiento de forma súbita, en niños menores de 2 años con datos clínicos francos de ATR, y mantenerse en hospitalización para realización de pruebas diagnósticas confirmatorias.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Punto de buena práctica</th>
</tr>
</thead>
<tbody>
<tr>
<td>En niños con diagnóstico de acidosis tubular renal se debe vigilar el estado hídrico y los niveles séricos de potasio.</td>
</tr>
</tbody>
</table>

4.2.2. Complicaciones del tratamiento

EVIDENCIA / RECOMENDACIÓN

<table>
<thead>
<tr>
<th>NIVEL / GRADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
</tr>
<tr>
<td>Se han reportado ciertas consecuencias por el uso de HCO₃ entre las que se han destacado por vía oral:</td>
</tr>
<tr>
<td>- Dispepsia</td>
</tr>
<tr>
<td>Intravenoso:</td>
</tr>
<tr>
<td>- Trastornos electrolíticos: hipocalcemia, hipocloremia, hipercalcemia, hiperactremia</td>
</tr>
<tr>
<td>- Alcalosis metabólica</td>
</tr>
<tr>
<td>- Efectos respiratorios: hipercapnia con apnea</td>
</tr>
<tr>
<td>- Efectos cardíacos: disminución en la contractilidad cardíaca, prolongación del intervalo QT y arritmias ventriculares</td>
</tr>
<tr>
<td>- Efectos neurológicos: parestesias, contractura muscular, tetania, mioclonus (probablemente secundaria a hipocalcemia), crisis convulsivas</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>SIGN</td>
</tr>
<tr>
<td>Al-Abri S, 2013</td>
</tr>
</tbody>
</table>

| **R** |
| Al administrar HCO₃ de sodio se recomienda vigilar el desarrollo de los siguientes, como posibles complicaciones por su administración: |
| - Alcalosis metabólica |
| - Hipocalcemia |
| - Arritmias |
| - Parestesias |
| **D** |
| SIGN |
| Al-Abri S, 2013 |

| **E** |
| En un estudio realizado en Buenos Aires, Argentina, en 215 pacientes tratados con citrato, se encontraron las siguientes manifestaciones: |
| - Distensión abdominal: 2.3% |
| - Diarrea: 0.9% |
| **4** |
| SIGN |
| Del-Valle E, 2013 |
| Reynolds T, 2005 |
- Sabor desagradable: 2.8%

<table>
<thead>
<tr>
<th>Contraindicaciones para el uso de citrato de potasio:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Úlcera gastroduodenal</td>
</tr>
<tr>
<td>- Hipercaliemia</td>
</tr>
<tr>
<td>- Infección urinaria</td>
</tr>
<tr>
<td>- Deterioro de la función renal</td>
</tr>
</tbody>
</table>

4
SIGN
Del-Valle E, 2013

| Al administrar citratos, se debe vigilar la aparición de distensión abdominal, diarrea, hipercaliemia. |

D
SIGN
Del-Valle E, 2013

| Los citratos no se recomiendan en casos de hipercaliemia, infección urinaria, deterioro de la función renal, así como en aquellos pacientes que se encuentren bajo uso de diuréticos ahorradores de potasio, amiloride o inhibidores de la enzima convertidora de angiotensina. |

D
SIGN
Del-Valle E, 2013
5. ANEXOS

5.1. Protocolo de Búsqueda

La búsqueda sistemática de información se enfocó en documentos obtenidos acerca de la temática del Diagnóstico y tratamiento de la Acidosis Tubular Renal en pacientes pediátricos, en el segundo nivel de atención. La búsqueda se realizó en PubMed y en sitios Web especializados.

Criterios de inclusión:
- Documentos escritos en idioma español, inglés, portugués, francés o italiano.
- Documentos publicados de 2009 a junio 2014. Dado los escasos resultados se abrió la búsqueda a 5 años más retrospectivamente; y posteriormente quedó abierto el periodo de búsqueda.
- Documentos enfocados a diagnóstico o tratamiento.

Criterios de exclusión:
Documentos escritos en otro idioma distinto a español, inglés, portugués, francés o italiano

5.1.1. Estrategia de búsqueda
5.1.1.1. Primera Etapa

Esta primera etapa consistió en buscar documentos relacionados al tema **Diagnóstico y tratamiento de la Acidosis Tubular Renal en pacientes pediátricos**, en PubMed. La búsqueda se limitó a estudios en humanos, documentos publicados de 2009 a junio 2014, en idioma inglés y español, del tipo de documento de Guías de Práctica Clínica y se utilizaron términos validados del MeSH. Se utilizó el término **Acidosis, Renal Tubular/Acidosis tubular renal**. Esta etapa de la estrategia de búsqueda no dió resultados.

<table>
<thead>
<tr>
<th>Búsqueda</th>
<th>Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>("Acidosis, Renal Tubular/diagnosis"[Mesh] OR "Acidosis, Renal Tubular/drug therapy"[Mesh] OR "Acidosis, Renal Tubular/therapy"[Mesh]) Filters: Practice Guideline; Guideline; Publication date from 2009/01/01 to 2014/06/31; Humans; English; French; Italian; Portuguese; Spanish; Child: birth-18 years</td>
<td>0</td>
</tr>
</tbody>
</table>

Algoritmo de búsqueda:
1. "Acidosis, Renal Tubular"[Mesh]
2. Diagnosis [Subheadings]
3. Drug therapy"[Subheadings]
4.- Therapy[Subheadings]
5.- #2 OR #3 OR #4
6.- #1 AND #5
7.- Practice Guideline[ptyp]
8.- Guideline[ptyp]
9.- #7 OR #8
10.- #6 AND #9
11.-("2009/01/01"[PDAT] : "2014/06/31"[PDAT])
12.- #10 AND #11
13.- Humans[Mesh]
14.- #12 AND #13
15.- English[lang]
16.- French[lang]
17.- Italian[lang]
18.- Portuguese[lang]
19.- Spanish[lang]
20.- #15 OR #16 OR #17 OR #18 OR #19
21.- #14 AND #20
22.- Infant[MeSH Terms]
23.- Child[MeSH Terms]
24.- Adolescent [MeSH Terms]
25.- #22 OR #23 OR #24
26.- #21 OR #25
27.- #1 AND (#2 OR #3 OR #4) AND (#7 OR #8) AND #11 AND #13 AND (#15 OR #16 OR #17 OR #18 OR #19) AND (#22 OR #23 OR #24)

Al no obtenerse resultados se procedió a replicar la búsqueda, en esta ocasión, 5 años más retrospectivamente (2004 a 2008). Tampoco se obtuvieron resultados.

<table>
<thead>
<tr>
<th>BÚSQUEDA</th>
<th>RESULTADO</th>
</tr>
</thead>
</table>

A continuación, de nueva cuenta, se replicó la búsqueda, pero ahora sin considerar periodo de tiempo específico en la búsqueda. No se obtuvieron resultados.
Se procedió a realizar la búsqueda en Sitios Web especializados, compiladores de Guías de Práctica Clínica; con el término “Acidosis, Renal Tubular”. A continuación se presenta una tabla con los resultados obtenidos.

<table>
<thead>
<tr>
<th>SITIOS WEB</th>
<th>BÚSQUEDA</th>
<th># DE RESULTADOS OBTENIDOS</th>
<th># DE DOCUMENTOS UTILIZADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guidelines International Network (GIN)</td>
<td>“Acidosis, Renal Tubular”</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>National Guideline Clearinghouse (NGC)</td>
<td>Keyword: “Acidosis, Renal Tubular” Age of Target Population: Infant (1 to 23 months), Child (2 to 12 years), Adolescent (13 to 18 years) Guideline Category: Diagnosis, Treatment</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Scottish Intercollegiate Guidelines Network (SIGN)</td>
<td>“Acidosis, Renal Tubular”</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>National Institute for Health and care excellence (NICE)</td>
<td>acidosis, renal tubular guidelines published guidance</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

5.1.1.2. **Segunda Etapa**

Se realizó la búsqueda de revisiones sistemáticas, con o sin metanálisis, en PubMed Se obtuvieron 2 resultados, mismos que fueron utilizados en la elaboración de la guía.

<table>
<thead>
<tr>
<th>BÚSQUEDA</th>
<th>RESULTADO</th>
</tr>
</thead>
</table>
Luego se realizó la búsqueda de reporte de casos de complicaciones de acidosis tubular renal en PubMed. **Se obtuvieron 313 resultados, de los cuales se utilizaron 4 documentos en la elaboración de la guía.**

<table>
<thead>
<tr>
<th>BÚSQUEDA</th>
<th>RESULTADO</th>
</tr>
</thead>
</table>

Posteriormente se realizó la búsqueda de estudios comparativos de epidemiología de acidosis tubular renal en población pediátrica, en PubMed. **Se obtuvieron 3 resultados, de los cuales se utilizaron 2 documentos en la elaboración de la guía.**

<table>
<thead>
<tr>
<th>BÚSQUEDA</th>
<th>RESULTADO</th>
</tr>
</thead>
</table>

Se realizó la búsqueda de artículos de publicaciones periódicas, en el periodo comprendido de 2004 a junio de 2014, en población en edad pediátrica. **Se obtuvieron 147 resultados, de los cuales se utilizaron 17 documentos en la elaboración de la guía.**

<table>
<thead>
<tr>
<th>BÚSQUEDA</th>
<th>RESULTADO</th>
</tr>
</thead>
</table>

A continuación se realizó la búsqueda sobre acidosis tubular renal en relación con el término MeSH terapeutica. **Se obtuvieron 43 resultados, de los cuales se utilizaron 2 documentos en la elaboración de la guía.**

<table>
<thead>
<tr>
<th>BÚSQUEDA</th>
<th>RESULTADO</th>
</tr>
</thead>
</table>
Posteriormente, se realizó la búsqueda de acidosis tubular renal en relación con el término de vocabulario libre “acidosis metabólica hiperclorémica”. **Se obtuvieron 18 resultados, de los cuales se emplearon 3 documentos en la elaboración de la guía.**

<table>
<thead>
<tr>
<th>BÚSQUEDA</th>
<th>RESULTADO</th>
</tr>
</thead>
</table>

Enseguida se realizó la búsqueda sobre acidosis tubular renal, en relación con “Calcio” como descriptor MeSh válido. **Se obtuvieron 17 resultados, de los cuales se utilizaron 3 documentos en la elaboración de la guía.**

<table>
<thead>
<tr>
<th>BÚSQUEDA</th>
<th>RESULTADO</th>
</tr>
</thead>
</table>

Además, se realizó la búsqueda sobre acidosis tubular renal, en relación con “Bicarbonato de sodio” como descriptor MeSh válido. **Se obtuvieron 21 resultados, de los cuales se utilizaron 2 documentos en la elaboración de la guía.**

<table>
<thead>
<tr>
<th>BÚSQUEDA</th>
<th>RESULTADO</th>
</tr>
</thead>
</table>

También se realizó la búsqueda sobre acidosis tubular renal, en relación con el término de vocabulario libre “Ph sanguíneo”, en cualquier parte del registro de PubMed. **Se obtuvieron 7 resultados, de los cuales se utilizaron 2 documentos en la elaboración de la guía.**

<table>
<thead>
<tr>
<th>BÚSQUEDA</th>
<th>RESULTADO</th>
</tr>
</thead>
</table>
5.1.1.3. **Tercera Etapa**

En esta tercera etapa del protocolo de búsqueda se procedió a realizar la búsqueda de información relevante para la guía en Sitios Web académicos y de algunas bases de datos a las que se tuvo acceso. A continuación se presenta la información de los sitios Web de donde se obtuvieron documentos con información relevante que fue empleada en la guía de práctica clínica en cuestión.

<table>
<thead>
<tr>
<th>SITIOS WEB</th>
<th># DE DOCUMENTOS UTILIZADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mexico. Secretaría de Salud. Catálogo Maestro de GPC.</td>
<td>1</td>
</tr>
<tr>
<td>HINDAWI</td>
<td>4</td>
</tr>
<tr>
<td>DIALNET</td>
<td>1</td>
</tr>
<tr>
<td>SciELO Venezuela</td>
<td>1</td>
</tr>
<tr>
<td>SciELO Argentina</td>
<td>1</td>
</tr>
<tr>
<td>SciELO BRASIL</td>
<td>1</td>
</tr>
<tr>
<td>SciELO México</td>
<td>1</td>
</tr>
<tr>
<td>BVS SALUD PUBLICA BRASIL</td>
<td>1</td>
</tr>
<tr>
<td>IMBIOMED</td>
<td>2</td>
</tr>
<tr>
<td>NATURE</td>
<td>1</td>
</tr>
<tr>
<td>ResearchGate</td>
<td>3</td>
</tr>
<tr>
<td>Medigraphic</td>
<td>1</td>
</tr>
<tr>
<td>BINASSS: Caja costarricense de Seguridad Social</td>
<td>1</td>
</tr>
<tr>
<td>OVID</td>
<td>1</td>
</tr>
<tr>
<td>UPTODATE</td>
<td>2</td>
</tr>
<tr>
<td>PMC</td>
<td>19</td>
</tr>
<tr>
<td>SPRINGERLINK</td>
<td>4</td>
</tr>
<tr>
<td>SCIENCEDIRECT</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
</tr>
</tbody>
</table>

En las 3 etapas desarrolladas de este protocolo de búsqueda se obtuvieron **622** resultados, de los cuales se utilizaron **87** documentos en la elaboración de esta GPC.
5.2. Escalas de Gradación

Niveles de evidencia científica y grados de recomendación de SIGN

<table>
<thead>
<tr>
<th>Niveles de evidencia científica</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>1++</td>
<td>Metaanálisis de alta calidad, revisiones sistemáticas de ensayos clínicos o ensayos clínicos de alta calidad con muy poco riesgo de sesgo</td>
</tr>
<tr>
<td>1+</td>
<td>Metaanálisis bien realizados, revisiones sistemáticas de ensayos clínicos o ensayos clínicos bien realizados con poco riesgo de sesgo</td>
</tr>
<tr>
<td>1-</td>
<td>Metaanálisis, revisiones sistemáticas de ensayos clínicos o ensayos clínicos con alto riesgo de sesgo</td>
</tr>
<tr>
<td>2++</td>
<td>Revisiones sistemáticas de alta calidad de estudios de cohorte o de casos y controles. Estudios de cohortes o de casos y controles con riesgo muy bajo de sesgo y con alta probabilidad de generar una relación causal</td>
</tr>
<tr>
<td>2+</td>
<td>Estudios de cohortes o de casos y controles bien realizados con bajo riesgo de sesgo y con una moderada probabilidad de generar una relación causal</td>
</tr>
<tr>
<td>2-</td>
<td>Estudios de cohortes o de casos y controles con alto riesgo de sesgo y riesgo significativo de que la relación no sea causal</td>
</tr>
<tr>
<td>3</td>
<td>Estudios no analíticos, como informes de casos y series de casos</td>
</tr>
<tr>
<td>4</td>
<td>Opinión de expertos</td>
</tr>
</tbody>
</table>

Grados de recomendación

<table>
<thead>
<tr>
<th>Grado</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Al menos un metaanálisis, revisión sistemática o ensayo clínico clasificado como 1++ y directamente aplicable a la población diana de la guía; o un volumen de evidencia científica compuesto por estudios clasificados como 1+ con gran consistencia entre ellos</td>
</tr>
<tr>
<td>B</td>
<td>Un volumen de evidencia científica compuesta por estudios clasificados como 2++, directamente aplicable a la población diana de la guía y que demuestren gran consistencia entre ellos; o evidencia científica extrapolada desde estudios clasificados como 1++ o 1+</td>
</tr>
<tr>
<td>C</td>
<td>Un volumen de evidencia científica compuesta por estudios clasificados como 2+ directamente aplicables a la población diana de la guía y que demuestran gran consistencia entre ellos; o evidencia científica extrapolada desde estudios clasificados como 2++</td>
</tr>
<tr>
<td>D</td>
<td>Evidencia científica de nivel 3 o 4; o evidencia extrapolada desde estudios clasificados como 2+</td>
</tr>
<tr>
<td>PBP</td>
<td>Práctica recomendada, basada en la experiencia clínica y el consenso del equipo redactor</td>
</tr>
</tbody>
</table>

Los estudios clasificados como 1- o 2- no deben de usarse en el proceso de la elaboración de recomendaciones por su alta posibilidad de sesgo

Escala modificada de Shekelle y colaboradores

<table>
<thead>
<tr>
<th>Categoría de la evidencia</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia</td>
<td>Evidencia para metaanálisis de los estudios clínicos aleatorios</td>
</tr>
<tr>
<td>Ib</td>
<td>Evidencia de por lo menos un estudio clínico controlado aleatorio</td>
</tr>
<tr>
<td>Ia</td>
<td>Evidencia de por lo menos un estudio controlado sin aleatorización</td>
</tr>
<tr>
<td>IIb</td>
<td>Al menos otro tipo de estudio cuasiexperimental o estudios de cohorte</td>
</tr>
<tr>
<td>III</td>
<td>Evidencia de un estudio descriptivo no experimental, tal como estudios comparativos, estudios de correlación, casos y controles y revisiones clínicas</td>
</tr>
<tr>
<td>IV</td>
<td>Evidencia de comités de expertos, reportes de opiniones o experiencia clínica de autoridades en la materia o ambas</td>
</tr>
</tbody>
</table>

Fuerza de la recomendación

<table>
<thead>
<tr>
<th>Fuerza</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Directamente basada en evidencia categoría I</td>
</tr>
<tr>
<td>B</td>
<td>Directamente basada en evidencia categoría II o recomendaciones extrapoladas de evidencia I</td>
</tr>
<tr>
<td>C</td>
<td>Directamente basada en evidencia categoría III o recomendaciones extrapoladas de evidencias categoría II</td>
</tr>
<tr>
<td>D</td>
<td>Directamente basada en evidencia categoría IV o de recomendaciones extrapoladas de evidencias categoría III</td>
</tr>
</tbody>
</table>
5.3. Cuadros y figuras

Cuadro 1. Clasificación de ATR de acuerdo a causalidad

Causas de Acidosis Tubular Renal Distal (Tipo 1)

1. ATR Distal Primaria
 a) Persistente
 a) Forma clásica (Esporádica o por herencia autosómica dominante o autosómica recesiva).
 b) Con sordera neurosensorial (Autosómica recesiva).
 c) Con pérdida de HCO₃
 d) ATRi
 b) Transitoria (en la infancia)

2. ATR Distal Secundaria
 a) Asociada a enfermedades genéticas (osteopetrosis, anemia de células falsiformes, síndrome de Ehlers-Danlos, ovalocitosis hereditaria, enfermedad de Wilson, nefrocalcinosis, hiperoxaluria primaria tipo I, deficiencia de canthinpalmitoiltransferasa, hipofosfatemia ligada al X hiperplasia adrenal congénita)
 b) Alteraciones del calcio (hiperparatiroidismo primario, hiperparatiroidismo hipercalcémico, intoxicación vitamina D, hipercalemia idiópata con nefrocalcinosis, hipercalemia-hipomagnesemia familiar con nefrocalcinosis)
 c) Síndromes disproteínémicos (hipergamaglobulinemia, crioglobulinemia, amiloidosis)
 d) Enfermedades autoinmunes (Lupus Eritematosos Sistémico, síndrome de Sjögren, hepatitis activa, cirrosis biliar primaria, tiroiditis, alveolitis, artritis reumatoide)
 e) Enfermedades renales, nefropatías intersticiales crónicas (trasplante renal, riñón en esponja, nefropatía por refluo o por obstrucción urinaria, nefropatía de los Balcanes)
 f) Estados hiponatraémicos (síndrome nefrótico, cirrosis).
 g) Medicamentos o toxinas (Anfotericina B, litio, analgésicos, tolueno, amiloride, trimetoprim, pentamidina, vanadium)

Causas Genéticas de Acidosis Tubular Renal

1. Proximal Primaria (tipo 2)
 a) Autosómica dominante
 b) Autosómica recesiva con alteraciones oculares
 c) Esporádica de la infancia

2. Distal Primaria (tipo 1)
 a) Autosómica dominante
 b) Autosómica recesiva con sordera
 c) Autosómica recesiva sin sordera

3. Mixta o combinada (tipo 3)
 a) Autosómica recesiva con osteopetrosis

4. Hipercalemica (tipo 4)
 a) Pseudohypoaldosteronismo tipo 1
 a) Autosómica dominante
 b) Autosómica recesiva

Causas de Acidosis Tubular Renal Proximal (Tipo 2)

1. ATR Proximal Primaria aislada
 1. Hereditaria (persistente)
 a) Autosómica dominante
 b) Autosómica recesiva asociada con retraso mental y anormalidad
 2. Esporádica (transitoria de la infancia)

2. ATR Proximal Secundaria
 1. En el contexto de Síndrome de Fanconi (cistinosis, galactosemia, intolerancia a la fructuosa, tirosinemia, enfermedad de Wilson, síndrome de Lowe, leucodistrofia metacromática, mieloma múltiple, enfermedad de cadenas ligeras).
 Enfermedades mitocondriales.
 2. Medicamentos y toxinas (acetazolamida, tetraciclinas, aminoglicosidos, valproato, ifosfamida, cadmio, mercurio).
3. Asociados a otras entidades clínicas (deficiencia de vitamina D, hiperparatiroidismo, hipocapnia crónica, síndrome de Leigh, cardiopatías cianógenas, enfermedades quísticas renales, síndrome de Alport, síndrome nefrótico corticorresistente, trasplante renal, amiloidosis, nefrolitiasis)

<table>
<thead>
<tr>
<th>Causas de Acidosis Tubular Renal Hipercalémica (tipo 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Hipercalémica Primaria</td>
</tr>
<tr>
<td>a) Hipercalemia de la infancia (transitoria)</td>
</tr>
<tr>
<td>II. Hipercalémica Secundaria</td>
</tr>
<tr>
<td>a) Deficiencia de mineralocorticoides</td>
</tr>
<tr>
<td>i. En ausencia de enfermedad renal (enfermedad de Addison, hipoaldosteronismo aislado, hiperplasia adrenal congénita)</td>
</tr>
<tr>
<td>ii. Hipoaldosteronismo hiporeninémico en pacientes con nefropatías crónicas. (Nefropatía diabética, lupus eritematoso, nefropatía asociada a SIDA)</td>
</tr>
<tr>
<td>iii. Hipoaldosteronismo hiporeninémico en pacientes con glomerulonefritis aguda</td>
</tr>
<tr>
<td>b) Resistencia a mineralocorticoides</td>
</tr>
<tr>
<td>i. Enfermedades genéticas (Pseudohipoaldosteronismo primario tipo I y tipo II, síndrome de Gordon)</td>
</tr>
<tr>
<td>ii. En nefropatías intersticiales crónicas (uropatía obstructiva, enfermedad quística renal, nefritis inducida a medicamentos, trasplante renal, nefropatía por analgésicos)</td>
</tr>
<tr>
<td>c) Inducida por drogas</td>
</tr>
<tr>
<td>i. Renina-aldosterona (inhibidores de ciclooxigenasa, inhibidores de enzima convertidora, heparina)</td>
</tr>
<tr>
<td>ii. Inhibición de la secreción renal de potasio (diuréticos, trimetoprim, ciclosporina A)</td>
</tr>
<tr>
<td>iii. Distribución alterada de potasio (antagonistas de Insulin, α y β adrenérgicos)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIPO DE ATR</th>
<th>HERENCIA</th>
<th>EDAD DE PRESENTACION</th>
<th>HALLAZGOS CLINICOS</th>
<th>PROTEINA</th>
<th>GEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATR distal Tipo 1</td>
<td>Autosómica Dominante</td>
<td>Anciano/Adulto</td>
<td>Acidosis metabólica leve/compensada Hipokalemia (variable) Hipercalecuria Hipocitraturia Nefrolítasis Nefrocalcinosis A veces raquitismo/osteomalacia Eritrocitosis secundaria</td>
<td>AE1</td>
<td>SCL4A1</td>
</tr>
<tr>
<td></td>
<td>Autosómica Recesiva</td>
<td>Niño/a</td>
<td>Acidosis metabólica con anemia hemolítica Sólo reportada en Sureste Asiático Acidosis metabólica, nefrocalcinosis temprana, Vómitos, deshidratación, Retraso en crecimiento, Raquitismo Sordera neurosensorial bilateral desde childhood Como la anterior, pero inicio tardío de sordera, algunos con audición normal</td>
<td>AE1</td>
<td>SCL4A1</td>
</tr>
<tr>
<td></td>
<td>Autosómica Recesiva con Sordera (inicio temprano)</td>
<td>Niño/a</td>
<td>Acidosis metabólica, Hipokalemia Retraso en crecimiento Daño intelectual Calificicación de Ganglio Basal Anomalías Oculares: queratopatía en banda, cataratas, glaucoma</td>
<td>ATPasa-H+, subunidad B1</td>
<td>ATP6V1B1</td>
</tr>
<tr>
<td></td>
<td>Autosómica Recesiva con Sordera (inicio tardío)</td>
<td>Niño/a</td>
<td>Acidosis metabólica, Hipokalemia Retraso en crecimiento Daño intelectual Calificicación de Ganglio Basal Anomalías Oculares: queratopatía en banda, cataratas, glaucoma</td>
<td>ATPasa-H+, Subunidad a 4</td>
<td>ATP6V0A4</td>
</tr>
<tr>
<td>ATR proximal Tipo 2</td>
<td>Autosómica Recesiva con anomalías oculares</td>
<td>Infancia</td>
<td>Acidosis metabólica Hipokalemia Retraso en crecimiento Daño intelectual Calificicación de Ganglio Basal Anomalías Oculares: queratopatía en banda, cataratas, glaucoma</td>
<td>NBC1</td>
<td>SLC4A4</td>
</tr>
<tr>
<td>ATR mixta Tipo 3</td>
<td>Autosómica Recesiva con osteopetrosis</td>
<td>Infancia</td>
<td>Acidosis metabólica Hipokalemia Osteopetrosis Ceguera Nefrocalcinosis temprana</td>
<td>CAL1</td>
<td>CA2</td>
</tr>
</tbody>
</table>

De F. AC, Karet F. Physiology 22:202-211, 2007
Cuadro 3. Causas de acidosis tubular renal secundaria

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Causa</th>
</tr>
</thead>
</table>
| ATR tipo 1 | 1. Trastornos del calcio (hiperparatiroidismo, intoxicación por vitamina D, hipercalemia idiopática)
2. Síndromes disproteinémicos (hipergamaglobulinemia, crioglobulinemia, amiloidosis)
3. Enfermedades autoinmunes (LES, Sjögren, cirrosis biliar primaria, artritis reumatoide)
4. Enfermedades renales: nefropatía obstructiva, nefropatía de los balkanes, rechazo del trasplante |
| ATR tipo 2 | Síndrome de Fanconi:
- Cistinosis
- Galactosemia
- Intolerancia a la fructuosa
- Tiroisminia
- Enfermedad de Wilson, mieloma múltiple, enfermedad de cadenas ligeras
Otras enfermedades:
- Deficiencia de vitamina D
- Hiperparatiroidismo
- Hipocapnia crónica
- Enfermedad quística medular
- Síndrome nefrótico corticoresistente
- Trasplante renal
- Amiloidosis |
| ATR tipo 4 | 1. Hiporeninemia
2. Hipoalosteronismo (Diabetes, LES, AIDS, nefropatía)
3. Nefropatía crónica intersticial
4. Fármacos |

<table>
<thead>
<tr>
<th>Medicamento</th>
<th>Dosis</th>
<th>Comentario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furosemida</td>
<td>1 mg/kg dosis vía oral</td>
<td>Vaciar vejiga, administrar medicamento Determinar pH urinario cada hora por 4 horas Valorar pH urinario mínimo durante la prueba</td>
</tr>
<tr>
<td>Furosemida + Fludrocortisona</td>
<td>1 mg/kg/dosis vía oral 1 mg/1.73 m²</td>
<td>Vaciar vejiga, administrar medicamento Determinar pH urinario cada hora por 4 horas Valorar pH urinario mínimo durante la prueba</td>
</tr>
<tr>
<td>Bicarbonato de sodio</td>
<td>4 mEq/kg vía oral</td>
<td>Vaciar vejiga, administrar medicamento Determinar pH, pCO₂ y HCO₃ urinario a los 60 y 90 min Medir gradiente pCO₂ orina-sangre</td>
</tr>
<tr>
<td>Bicarbonato de sodio + Acetazolamida</td>
<td>4 mEq/kg vía oral 500 mg/1.73m²</td>
<td>Vaciar vejiga, administrar medicamento Determinar pH, pCO₂ y HCO₃ urinario a los 60 y 90 min Medir Gradiente pCO₂ orina-sangre</td>
</tr>
<tr>
<td>Cloruro de amonio</td>
<td>Lactantes: 75 mEq/m² por sonda nasogástrica Si vomita repetir la dosis</td>
<td>Medir pH urinario cada hora, durante 6 horas Valorar pH urinario mínimo durante la prueba Si es posible determinar amonio y acidez titulable en las dos orinas con pH urinario menor</td>
</tr>
</tbody>
</table>

Realizada por los autores de la GPC
Cuadro 5. Fórmulas utilizadas en ATR

<table>
<thead>
<tr>
<th>Brecha aniónica</th>
<th>Brecha aniónica corregida</th>
</tr>
</thead>
<tbody>
<tr>
<td>(BA = Na - (Cl + HCO_3^-))</td>
<td>(BAc = BA + 0.25(\text{Albúmina normal} - \text{Albúmina medida}))</td>
</tr>
<tr>
<td>BA: Brecha aniónica</td>
<td>BA: Brecha aniónica</td>
</tr>
<tr>
<td>Na: Sodio</td>
<td>Se utiliza en caso de existir hipoalbuminemia</td>
</tr>
<tr>
<td>Cl: Cloro</td>
<td></td>
</tr>
<tr>
<td>HCO_3^-: Bicarbonato</td>
<td></td>
</tr>
<tr>
<td>Valor normal de 8 a 16 mEq/l</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brecha aniónica urinaria</th>
<th>Fórmula de Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(BA_u = (Na_u + K_u) - Cl_u)</td>
<td>(pCO_2 = [(1.5 \cdot HCO_3^-) + 8] \pm 2)</td>
</tr>
<tr>
<td>BA_u: Brecha aniónica urinaria</td>
<td>pCO_2: Presión parcial de dióxido de carbono</td>
</tr>
<tr>
<td>Na_u: Sodio urinario</td>
<td>HCO_3^-: Bicarbonato</td>
</tr>
<tr>
<td>K_u: Potasio urinario</td>
<td>Si pCO_2 medida es mayor que el calculado, coexiste acidosis respiratoria primaria</td>
</tr>
<tr>
<td>Cl_u: Cloro urinario</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción excretada de bicarbonato</th>
<th>Filtración glomerular</th>
</tr>
</thead>
<tbody>
<tr>
<td>(FeHCO_3^- = \frac{U_{HCO_3^-}}{U_{crea}} \cdot \frac{P_{HCO_3^-}}{P_{crea}} \cdot 100)</td>
<td>(FG = \frac{(K)(\text{Talla en cm})}{(\text{Creatinina sérica})})</td>
</tr>
<tr>
<td>U: Concentración urinaria</td>
<td>K: Constante</td>
</tr>
<tr>
<td>P: Concentración plasmática</td>
<td>Crea: Creatinina</td>
</tr>
<tr>
<td>Crea: Creatinina</td>
<td></td>
</tr>
<tr>
<td>HCO_3^-: Bicarbonato</td>
<td></td>
</tr>
<tr>
<td>El valor normal esperado es menor al 2%. Para ATR los valores variarán de acuerdo al tipo:</td>
<td></td>
</tr>
<tr>
<td>• ATR tipos 1 y 4 tendrán valores inferiores a 5%</td>
<td></td>
</tr>
<tr>
<td>• ATR tipo 2 será dependiente del tratamiento con bicarbonato, ya que sin tratamiento se esperarán, igualmente cifras menores de 5% y, bajo tratamiento y bicarbonato sérico normal, se podrá llegar a >10%</td>
<td></td>
</tr>
<tr>
<td>• ATR tipo 3 serán esperados valores >5%</td>
<td></td>
</tr>
</tbody>
</table>

Realizado por los autores de la GPC
Cuadro 6. Criterios de referencia al nefrólogo

<table>
<thead>
<tr>
<th>Criterios de referencia inmediata</th>
<th>Criterios de referencia mediata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidosis metabólica persistente:</td>
<td>Acidosis metabólica hiperclorémica:</td>
</tr>
<tr>
<td>• Episodios de deshidratación</td>
<td>• Talla baja</td>
</tr>
<tr>
<td>recurrente sin causa aparente</td>
<td>• Nefrocalcinosis</td>
</tr>
<tr>
<td>• Hipotonía muscular</td>
<td>• Raquitismo</td>
</tr>
<tr>
<td>• Parálisis flácida</td>
<td>• Sordera</td>
</tr>
<tr>
<td>• Hipocalciemia recurrente o</td>
<td>• Poliuria</td>
</tr>
<tr>
<td>refractaria a tratamiento</td>
<td>• Hipofosfatemia</td>
</tr>
</tbody>
</table>

Realizado por los autores de la GPC

Cuadro 7. Diagnóstico y clasificación de ATR con bicarbonato sérico normal

<table>
<thead>
<tr>
<th></th>
<th>Tipo 1</th>
<th>Tipo 2</th>
<th>Tipo 3</th>
<th>Tipo 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>K plasma</td>
<td>↓</td>
<td>Ni o ↓</td>
<td>Ni o ↓</td>
<td>↑</td>
</tr>
<tr>
<td>K↓</td>
<td>↑</td>
<td>Ni o ↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>pH urinario</td>
<td>>5.5</td>
<td><5.5*</td>
<td>>6</td>
<td><5.5</td>
</tr>
<tr>
<td>Anión gap urinario</td>
<td>Positivo</td>
<td>Negativo</td>
<td>Positivo</td>
<td>Positivo</td>
</tr>
<tr>
<td>Fe de HCO₃</td>
<td><5 %</td>
<td>>10%</td>
<td>>5 %</td>
<td>>5 %</td>
</tr>
<tr>
<td>Ca urinario</td>
<td>↑</td>
<td>Ni</td>
<td>↑</td>
<td>Ni o ↑</td>
</tr>
<tr>
<td>Diferencia de pCO₂</td>
<td><20</td>
<td>>20</td>
<td><20</td>
<td>>20</td>
</tr>
<tr>
<td>urinaria-sérica</td>
<td>↓</td>
<td>Ni</td>
<td>↓</td>
<td>Ni</td>
</tr>
</tbody>
</table>

*Cuando el HCO₃ sérico normal es mayor de 10%, y cuando está en acidosis metabólica es menor de 5% |

N: Normal

Cuadro 8. Valores gasométricos normales en San José, Costa Rica

<table>
<thead>
<tr>
<th>Edad</th>
<th>n</th>
<th>pH (DE)</th>
<th>pCO₂ [mm Hg] (DE)</th>
<th>HCO₃ [mmol/l] (DE)</th>
<th>pO₂ [mm Hg] (DE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 h a 1 año</td>
<td>46</td>
<td>7.39(0.045)</td>
<td>29.6 (4.39)</td>
<td>17.7 (1.96)</td>
<td>69.1 (6.2)</td>
</tr>
<tr>
<td>2 a 5 años</td>
<td>76</td>
<td>7.425(0.038)</td>
<td>29.4 (3.20)</td>
<td>18.9 (1.89)</td>
<td>74.2 (7.2)</td>
</tr>
<tr>
<td>6 a 12 años</td>
<td>82</td>
<td>7.425(0.032)</td>
<td>31.8 (2.15)</td>
<td>20.5 (1.28)</td>
<td>79.5 (5.3)</td>
</tr>
<tr>
<td>13 a 17 años</td>
<td>40</td>
<td>7.4 (0.026)</td>
<td>35.6 (2.90)</td>
<td>21.9 (1.47)</td>
<td>80.5 (6.0)</td>
</tr>
<tr>
<td>18 a 50 años</td>
<td>60</td>
<td>7.416(0.024)</td>
<td>35.2 (3.22)</td>
<td>22.5 (1.97)</td>
<td>83.1 (7.0)</td>
</tr>
</tbody>
</table>

DE: Desviación estándar; ↑ unidad de medida
Cuadro 9. Intervalos de referencia para HCO₃ en menores de 8 años de edad

<table>
<thead>
<tr>
<th>Edad (años)</th>
<th>Hombres</th>
<th>Mujeres</th>
<th>HCO₃ (mEq/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 a < 3</td>
<td>1 a < 4</td>
<td></td>
<td>17 a 25</td>
</tr>
<tr>
<td>3 a < 4</td>
<td>4 a < 6</td>
<td></td>
<td>18 a 26</td>
</tr>
<tr>
<td>4 a < 6</td>
<td>6 a < 8</td>
<td></td>
<td>19 a 27</td>
</tr>
<tr>
<td>6 a < 8</td>
<td>8 a < 10</td>
<td></td>
<td>20 a 28</td>
</tr>
<tr>
<td>≥8</td>
<td>≥10</td>
<td></td>
<td>21 a 29</td>
</tr>
</tbody>
</table>

Cuadro 10. Tratamiento con soluciones alcalinizantes

<table>
<thead>
<tr>
<th>Formulación</th>
<th>Equivalencia de álcali</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicarbonato de sodio</td>
<td>84 miligramos</td>
</tr>
<tr>
<td></td>
<td>1 gramo</td>
</tr>
<tr>
<td></td>
<td>1 mEq</td>
</tr>
<tr>
<td></td>
<td>12 mEq</td>
</tr>
<tr>
<td>Bicarbonato de potasio</td>
<td>100 miligramos</td>
</tr>
<tr>
<td></td>
<td>1 gramo</td>
</tr>
<tr>
<td></td>
<td>1 mEq</td>
</tr>
<tr>
<td></td>
<td>10 mEq</td>
</tr>
<tr>
<td>Solución de bicarbonato</td>
<td>Bicarbonato de sodio</td>
</tr>
<tr>
<td></td>
<td>Bicarbonato de potasio</td>
</tr>
<tr>
<td></td>
<td>Agua destilada</td>
</tr>
<tr>
<td></td>
<td>Jarabe de sabor</td>
</tr>
<tr>
<td></td>
<td>42 g</td>
</tr>
<tr>
<td></td>
<td>50 g</td>
</tr>
<tr>
<td></td>
<td>1000 ml</td>
</tr>
<tr>
<td></td>
<td>1 ml es igual:</td>
</tr>
<tr>
<td></td>
<td>0.5 mEq</td>
</tr>
<tr>
<td></td>
<td>0.5 mEq</td>
</tr>
<tr>
<td>Solución de Bicarbonato</td>
<td>Bicarbonato de sodio</td>
</tr>
<tr>
<td></td>
<td>Bicarbonato de potasio</td>
</tr>
<tr>
<td></td>
<td>Agua destilada</td>
</tr>
<tr>
<td></td>
<td>Jarabe de sabor</td>
</tr>
<tr>
<td></td>
<td>56 g</td>
</tr>
<tr>
<td></td>
<td>33 g</td>
</tr>
<tr>
<td></td>
<td>1000 ml</td>
</tr>
<tr>
<td></td>
<td>1 ml es igual:</td>
</tr>
<tr>
<td></td>
<td>0.66 mEq</td>
</tr>
<tr>
<td></td>
<td>0.33 mEq</td>
</tr>
<tr>
<td>Solución de citratos (Shohl’s)</td>
<td>Ácido Cítrico</td>
</tr>
<tr>
<td></td>
<td>Citrato de sodio</td>
</tr>
<tr>
<td></td>
<td>Agua destilada</td>
</tr>
<tr>
<td></td>
<td>Jarabe de sabor</td>
</tr>
<tr>
<td></td>
<td>140 g</td>
</tr>
<tr>
<td></td>
<td>90 g</td>
</tr>
<tr>
<td></td>
<td>1000 ml</td>
</tr>
<tr>
<td></td>
<td>1 ml es igual:</td>
</tr>
<tr>
<td></td>
<td>1 mEq</td>
</tr>
<tr>
<td>Solución de citrato de potasio (ácido cítrico y potasio)</td>
<td>Ácido cítrico</td>
</tr>
<tr>
<td></td>
<td>Citrato de sodio</td>
</tr>
<tr>
<td></td>
<td>Agua destilada</td>
</tr>
<tr>
<td></td>
<td>Jarabe de sabor</td>
</tr>
<tr>
<td></td>
<td>66.8 g</td>
</tr>
<tr>
<td></td>
<td>220 g</td>
</tr>
<tr>
<td></td>
<td>1000 ml</td>
</tr>
<tr>
<td></td>
<td>1 ml es igual:</td>
</tr>
<tr>
<td></td>
<td>2 mEq</td>
</tr>
<tr>
<td>Bicitra (solución comercial):</td>
<td>Ácido cítrico</td>
</tr>
<tr>
<td></td>
<td>Citrato de sodio</td>
</tr>
<tr>
<td></td>
<td>Agua destilada</td>
</tr>
<tr>
<td></td>
<td>60 g</td>
</tr>
<tr>
<td></td>
<td>100 g</td>
</tr>
<tr>
<td></td>
<td>1000 ml</td>
</tr>
<tr>
<td></td>
<td>1 ml es igual:</td>
</tr>
<tr>
<td></td>
<td>1 mEq</td>
</tr>
<tr>
<td>Polycitra (solución comercial)</td>
<td>Ácido cítrico</td>
</tr>
<tr>
<td></td>
<td>Citrato de sodio</td>
</tr>
<tr>
<td></td>
<td>Citrato de potasio</td>
</tr>
<tr>
<td></td>
<td>66.8 g</td>
</tr>
<tr>
<td></td>
<td>100 g</td>
</tr>
<tr>
<td></td>
<td>110 g</td>
</tr>
</tbody>
</table>

Realizado por los autores de la GPC
Figura 1. Comparación entre valores absolutos mínimos y máximos de bicarbonato sérico en población pediátrica, realizado por los autores de la GPC.
5.4. Diagramas de Flujo

Flujograma: Diagnóstico y tratamiento de Acidosis Tubular Renal
5.5. Listado de Recursos

5.5.1. **Tabla de Medicamentos**

Medicamentos mencionados en la guía e indicados en el tratamiento de **Acidosis Tubular Renal** del **Cuadro Básico Sectorial**:

<table>
<thead>
<tr>
<th>Clave</th>
<th>Principio Activo</th>
<th>Dosis Recomendada</th>
<th>Presentación</th>
<th>Tiempo</th>
<th>Efectos Adversos</th>
<th>Interacciones</th>
<th>Contraindicaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>010.000.2157.00</td>
<td>Furosemida</td>
<td>2 mg/kg de peso corporal/día cada 8 horas. Dosis máxima 6 mg/kg de peso corporal/día</td>
<td>Solución oral Cada ml contiene Furosemida 10 mg Envase con un frasco gotero con 60 ml</td>
<td></td>
<td>Náusea, cefalea, hipocalcemia, alcalosis metabólica, hipotensión arterial, sordera transitoria, hiperuricemia, hiponatremia, hipocalcemia, hipomagnesemia</td>
<td>Con aminoglucósidos o cefalosporinas incrementa la nefrotoxicidad. La indometacina inhibe el efecto diurético</td>
<td>Hipersensibilidad al fármaco, embarazo en el primer trimestre e insuficiencia hepática</td>
</tr>
<tr>
<td>010.000.2307.00</td>
<td>Furosemida</td>
<td>2 mg/kg de peso corporal/día cada 8 horas. Dosis máxima 6 mg/kg de peso corporal/día</td>
<td>Cada tableta contiene furosemida 40 mg Envase con 20 tabletas</td>
<td></td>
<td>Náusea, cefalea, hipocalcemia, alcalosis metabólica, hipotensión arterial, sordera transitoria, hiperuricemia, hiponatremia, hipocalcemia, hipomagnesemia</td>
<td>Con aminoglucósidos o cefalosporinas incrementa la nefrotoxicidad. La indometacina inhibe el efecto diurético</td>
<td>Hipersensibilidad al fármaco, embarazo en el primer trimestre e insuficiencia hepática</td>
</tr>
<tr>
<td>010.000.2308.00</td>
<td>Furosemida</td>
<td>Inicial: 1 mg/kg de peso corporal, incrementar la dosis en 1 mg cada 2 horas hasta encontrar el efecto terapéutico. Dosis máxima: 6 mg/kg/día</td>
<td>Cada ampolla contiene furosemide 20 mg. Envase con 5 ampolletas</td>
<td></td>
<td>Náusea, cefalea, hipocalcemia, alcalosis metabólica, hipotensión arterial, sordera transitoria, hiperuricemia, hiponatremia,</td>
<td>Con aminoglucósidos o cefalosporinas incrementa la nefrotoxicidad. La indometacina inhibe el efecto diurético</td>
<td>Hipersensibilidad al fármaco, embarazo en el primer trimestre e insuficiencia hepática</td>
</tr>
<tr>
<td>Código</td>
<td>Nombre del Medicamento</td>
<td>Dosis</td>
<td>Forma de administración</td>
<td>Efectos Adversos</td>
<td>Hipersensibilidad</td>
<td>Información Adicional</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------------------</td>
<td>-------</td>
<td>-------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>010.000.2302.00</td>
<td>Acetazolamida</td>
<td>Niños: 5 mg/kg de peso corporal/día, por la mañana</td>
<td>Cada tableta contiene acetazolamida 250 mg. Envase con 20 tabletas</td>
<td>Somnolencia, desorientación, parestesias, dermatitis, depresión de la médula ósea, litiasis renal</td>
<td>Aumenta las respuestas a fármacos alcalinos y disminuye con los fármacos ácidos</td>
<td>Hipersensibilidad al fármaco, acidosis metabólica e insuficiencia renal</td>
<td></td>
</tr>
<tr>
<td>010.000.2303.00</td>
<td>Acetazolamida</td>
<td>Niños: 5 mg/kg de peso corporal/día, por la mañana</td>
<td>Cada frasco ampolla contiene acetazolamida sódica 500 mg</td>
<td>Somnolencia, desorientación, parestesias, dermatitis, depresión de la médula ósea, litiasis renal</td>
<td>Aumenta las respuestas a fármacos alcalinos y disminuye con los fármacos ácidos</td>
<td>Hipersensibilidad al fármaco, acidosis metabólica e insuficiencia renal</td>
<td></td>
</tr>
<tr>
<td>010.000.4160.00</td>
<td>Fludrocortisona</td>
<td>Niños: 50 a 100 μg cada 24 horas</td>
<td>Cada comprimido contiene acetato de fludrocortisona 0.1 mg. Envase con 100 comprimidos</td>
<td>Hipertensión arterial, reacción anafiláctica, vértigo, insuficiencia cardíaca congestiva, cefalea grave, hipocalcemia y edema periférico</td>
<td>Con digitálicos puede producir arritmias cardíacas. Con diuréticos se intensifica el efecto hipocaliémico</td>
<td>Hipersensibilidad a la fludrocortisona</td>
<td></td>
</tr>
<tr>
<td>010.000.3619.00</td>
<td>Bicarbonato de sodio</td>
<td>Adultos y niños mayores de 2 años: la dosis depende de los valores sanguíneos de CO₂, pH y condiciones del paciente</td>
<td>Solución inyectable al 7.5%. Cada ampolla contiene bicarbonato de sodio 0.75g. Envase con 50 ampollas con 10 ml. Cada ampolla con 10 ml contiene: Bicarbonato de sodio 8.9 mEq</td>
<td>Las dosis excesivas o la administración rápida causan resequedad de boca, sed, cansancio, dolor muscular, pulso irregular, inquietud, distensión abdominal, irritabilidad</td>
<td>No mezclar con sales de calcio para su administración. Prolonga la duración de efectos de quinidina, anfetaminas, efedrina y seudofedrina. Aumenta la eliminación renal de las tetraciclinas, en especial de doxiciclina</td>
<td>No mezclar con sales de calcio, hipocalcemia</td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Nombre del fármaco</td>
<td>Aplicación</td>
<td>Uso</td>
<td>Precauciones</td>
<td>Precauciones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010.000.3618.00</td>
<td>Bicarbonato de sodio</td>
<td>Adultos y niños mayores de 2 años: la dosis depende de los valores sanguíneos de CO₂, pH y condiciones del paciente</td>
<td>Solución inyectable al 7.5%. Cada frasco ámpula contiene: bicarbonato de sodio 3.75 g. El envase contiene 50 ml bicarbonato de sodio 44.5 mEq.</td>
<td>Las dosis excesivas o la administración rápida causan resequedad de boca, sed, cansancio, dolor muscular, pulso irregular, inquietud, distensión abdominal, irritabilidad.</td>
<td>No mezclar con sales de calcio para su administración. Prolonga la duración de efectos de quinidina, anfetaminas, efebrina y seudoefedrina. Aumenta la eliminación renal de las tetraciclinas, en especial de doxiciclina.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.6. Cédula de Verificación de Apego a las Recomendaciones Clave de la Guía de Práctica Clínica

<table>
<thead>
<tr>
<th>Diagnóstico(s) Clínico(s):</th>
<th>Acidosis tubular renal</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE-10</td>
<td>N25.8 Otros trastornos resultantes de la función renal alterada</td>
</tr>
<tr>
<td>Código del CMGPC:</td>
<td></td>
</tr>
</tbody>
</table>

TÍTULO DE LA GPC

Diagnóstico y tratamiento de la acidosis tubular renal en pacientes pediátricos

<table>
<thead>
<tr>
<th>POBLACIÓN BLANCO</th>
<th>USUARIOS DE LA GUÍA</th>
<th>NIVEL DE ATENCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niños y niñas de 0 a 18 años de edad</td>
<td>Medicina general, medicina familiar, pediatría, gastroenterología pediátrica, endocrinología pediátrica, nefrología pediátrica</td>
<td>Primer, segundo y tercer nivel de atención</td>
</tr>
</tbody>
</table>

Calificación de las recomendaciones

(Cumplida: SI=1, NO=0, No Aplica=NA)

DIAGNÓSTICO

1. ¿Al realizar el diagnóstico de ATR, se determinó el sitio del defecto (proximal, distal o mixto)?
2. ¿Se consideró como sospecha diagnóstica a la ATRI en el paciente con alteraciones anatómicas urológicas?
3. ¿Se sospechó ATRI en los pacientes con talla baja, nefrocalcinosis, raquitismo, osteopenia, uropatía obstructiva o historia familiar para ATR, a pesar de contar con gasometría normal?
4. ¿Se sospechó ATR en la evaluación del paciente con talla baja?
5. ¿Se solicitó ultrasonido renal para descartar nefrocalcinosis, al realizar el diagnóstico de ATR?
6. ¿Al realizar el diagnóstico de acidosis metabólica, se solicitó nueva gasometría, electrolitos séricos (cloro, sodio, potasio, calcio y fósforo) y albúmina?
7. ¿Se hizo el cálculo de corrección de Winter?
8. ¿Se calculó la brecha aniónica?
9. ¿Se realizó una cuantificación sérica de creatinina?
10. ¿Se calcularon las fracciones excretadas de bicarbonato y fósforo?
11. ¿Se realizó fracción excretada de bicarbonato, con administración de bicarbonato, para confirmar el diagnóstico de ATR tipo 2?
12. ¿Se obtuvieron electrólitos urinarios, para calcular la brecha aniónica urinaria, en los pacientes con sospecha de ATR?
13. ¿Ante la sospecha de ATR con bicarbonato límite de, se realizaron pruebas de acidificación urinaria?

TRATAMIENTO

1. ¿Se usó bicarbonato de sodio o potasio a dosis inicial 1 a 2 mEq/kg/día, en aumento progresivo, de ser necesario, hasta llegar a niveles de >20 mEq/l en niños ≤2 años de edad, o de >22 mEq/l en niños >2 años de edad?
2. ¿En pacientes con ATR y nefrocalcinosis, se usó solución de citrato de potasio?
3. ¿Se mantuvieron niveles de bicarbonato en 22 mEq/l para asegurar el crecimiento?
4. ¿Se usó bicarbonato de sodio y potasio en el tratamiento de pacientes con ATR tipo 2?
5. Total de recomendaciones cumplidas (1)
6. Total de recomendaciones no cumplidas (0)
7. Total de recomendaciones que no aplican al caso evaluado (NA)
8. Total de recomendaciones que aplican al caso evaluado

Porcentaje de cumplimiento de las recomendaciones evaluadas (%)

Apego del expediente a las recomendaciones clave de la GPC (SI/NO)
6. GLOSARIO

Autoanalizador: máquina utilizada en el laboratorio clínico para realizar mediciones de varias enzimas o componentes en muestras biológicas. Se le conoce como química sanguínea de rutina y la medición reportada de bicarbonato, se obtiene a partir de la consideración de la pCO₂.

Catarata: opacificación del cristalino, que interfiere en forma progresiva con la agudeza visual. Según la etiología y el manejo clínico de esta enfermedad, clasificamos a las cataratas en: senil, congénita, traumática y secundaria

Diabetes insípida nefrogénica: síndrome clínico caracterizada por la presencia de volúmenes urinarios altos, con baja concentración de solutos, esto debido a un defecto o resistencia de los túbulos para concentrar la orina, al estímulo de concentraciones normales o elevadas de arginina/vasopresina

Fluorosis: condición que surge del consumo excesivo de fluor durante la etapa de formación dental.

Glaucoma: enfermedad ocular cuyo cuadro clínico se caracteriza por incremento de la presión intraocular, excavación, degeneración del disco óptico y daño típico de fibras retinianas, que provocan defectos del campo visual.

Nefrocalcinosis: evidencia radiológica o ecográfica de depósito de calcio en el parénquima renal.

Osteomalacia: en la osteomalacia y en el raquitismo, que es el nombre de la osteomalacia cuando ocurre en los niños o antes de que cierren las placas de crecimiento de los cartílagos epifisarios, el problema es un defecto en la mineralización de la matriz orgánica del esqueleto. Esta mineralización insuficiente ocurre en el hueso y en la matriz del cartílago de las placas de crecimiento.

Queratopatía en banda: se trata de una alteración degenerativa de la córnea caracterizada por el depósito de sales de calcio en el espacio subepitelial y en la parte anterior de la membrana de Bowman.

Reflujo vesicoureteral (RVU): se define como el paso retrógrado no fisiológico de la orina desde la vejiga al uréter, probablemente debido a una disfunción de la unión ureterovesical. Se denomina RVU secundario al que está ocasionado por una clara causa patogénica, como ocurre en los procesos obstructivos uretrales de causa anatómica (válvulas de uretra posterior) o funcional (vejiga neurógena). Se denomina RVU primario cuando no existe una causa evidente y se supone que es debido a un defecto, bien anatómico o funcional, de la propia unión ureterovesical.

Síndrome de Fanconi: es un trastorno generalizado de la función de los túbulos proximales renales. Los signos de la disfunción tubular proximal incluyen hipofosfatemia, hipouricemia e hipocaliemia debido a pérdida renal, asociándose a glucosuria normoglucémica, aminoaciduria generalizada, proteinuria de bajo peso molecular y acidosis renal de los túbulos proximales. En caso de insuficiencia renal severa, algunos de estos signos pueden estar ausentes.

Síndrome de Turner (ST): forma parte del grupo de anomalías cromosómicas que afectan a los gonosomas. Se caracteriza por talla baja y disgenesia gonadal en mujeres que tienen un solo cromosoma X y la ausencia de todo o parte de un segundo cromosoma sexual, ya sea X o Y.

Valvas uretrales: Las valvas uretrales congénitas son malformaciones raras. Se cree que se pueden deber a la persistencia de los pliegues ureterales que normalmente desaparecen al principio del cuarto mes de gestación.
7. **BIBLIOGRAFÍA**

6. Al-Abri SA, Olson KR. Baking soda can settle the stomach but upset the heart: case files of the medical toxicology fellowship at the University of California, San Francisco. J Med Toxicol. 2013; (9)3:255-258

95. Salter MD. Ibuprofen-Induced hypokalemia and distal renal tubular acidosis: a patient’s perceptions of over-the-Counter Medications and their adverse effects. Case Rep Crit Care, 2013; 2013: 875857
8. AGRADECIMIENTOS

Se agradece a las autoridades del Hospital Infantil de México Federico Gómez, Instituto Nacional de Pediatría, Centro Regional de Alta Especialidad de Chiapas y al Instituto Mexicano del Seguro Social; UMAE Hospital de Pediatría Dr. Silvestre Frenk Freund, CMN Siglo XXI y UMAE Hospital General, Dr. Gaudencio González Garza, CMN La Raza, las gestiones realizadas para que el personal adscrito al centro o grupo de trabajo que desarrolló la presente guía asistiera a los eventos de capacitación en Medicina Basada en la Evidencia y temas afines, coordinados por el Centro Nacional de Excelencia Tecnológica en Salud, y el apoyo, en general, al trabajo de los autores.

Asimismo, se agradece a las autoridades del Instituto Mexicano del Seguro Social y del Instituto Nacional de Enfermedades Respiratorias, que participarán en los procesos de validación y verificación, su valiosa colaboración en esta guía.
9. Comité Académico

Centro Nacional de Excelencia Tecnológica en Salud (CENETEC-SALUD)

Dr. Francisco Ramos Gómez Director General

Dr. Jesús Ojino Sosa García Director de Integración de GPC

Dr. Arturo Ramírez Rivera Subdirector de GPC

Dra. Violeta Estrada Espino Departamento de validación y normatividad de GPC

Dr. Cristobal León Oviedo Coordinador de guías de medicina interna

Dr. Oscar Iván Flores Rivera Coordinador de guías de medicina interna

Dra. Mercedes del Pilar Álvarez Goris Coordinadora de guías de ginecología y obstetricia

Dr. Joan Erick Gómez Miranda Coordinador de guías de cirugía

Dr. Christian Fareli González Coordinador de guías de cirugía

Dra. Lourdes Amanecer Bustamante Lambarén Coordinadora de guías de pediatría

Lic. José Alejandro Martínez Ochoa Investigación documental

Dr. Pedro Nieves Hernández Subdirector para la gestión de GPC

Dra. Maricela Sánchez Zúñiga Departamento de apoyo científico para GPC
10. **DIRECTORIO SECTORIAL y del CENTRO DESARROLLADOR**

DIRECTORIO SECTORIAL

Secretaría de Salud
Dr. José Narro Robles
Secretario de Salud

Instituto Nacional de Pediatría
Dr. Alejandro Serrano Sierra
Director general

Instituto Mexicano del Seguro Social
Mtro. Mikel Arriola Peñalosa
Director General

Instituto Mexicano del Seguro Social
Dr. Rafael Manuel Navarro Meneses
Director de Prestaciones Médicas

Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado
Lic. José Reyes Baeza Terrazas
Director General

Hospital Infantil de México
Federico Gómez
Dr. José Alberto García Aranda
Director general

Sistema Nacional para el Desarrollo Integral de la Familia
Lic. Laura Vargas Carrillo
Titular del Organismo SNDIF

Petróleos Mexicanos
Dr. José Antonio González Anaya
Director General

Secretaría de Marina Armada de México
Almte. Vidal Francisco Soberón Sanz
Secretario de Marina

Secretaría de la Defensa Nacional
Gral. Salvador Cienfuegos Zepeda
Secretario de la Defensa Nacional

Consejo de Salubridad General
Dr. Jesús Añor Rodríguez
Secretario del Consejo de Salubridad General
11. Comité Nacional de Guías de Práctica Clínica

Dr. José Meljern Moezuma

Subsecretario de Integración y Desarrollo del Sector Salud
Dr. Pablo Antonio Kuri Morales

Subsecretario de Prevención y Promoción de la Salud
Dr. Guillermo Miguel Ruiz-Palacios y Santos

Titolario de la Comisión Coordinadora de Institutos Nacionales de Salud y Hospitales de Alta Especialidad
Dr. Gabriel Jaime O’Shea Cuevas

Comisionado Nacional de Protección Social en Salud
Dr. Isidro Ávila Martínez

Secretario Técnico del Consejo Nacional de Salud
Dr. Jesús Ancer Rodríguez

Secretario del Consejo de Salubridad General
General de Brigada M. C. Daniel Gutiérrez Rodríguez

Director General de Sanidad Militar de la Secretaría de la Defensa Nacional
Cap. Nav. SSN. M.C. Derm. Luis Alberto Bonilla Arcuate

Director General Adjunto de Sanidad Naval de la Secretaría de Marina Armada de México
Dr. José de Jesús Arriaga Dávila

Director de Prestaciones Médicas del Instituto Mexicano del Seguro Social
Dr. Rafael Manuel Navarro Menejes

Director Médico del Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado
Dr. Marco Antonio Navarrete Prado

Subdirector de Servicios de Salud de Petróleos Mexicanos
Lic. Mariela Amalia Padilla Hernández

Directora General de Integración del Sistema Nacional para el Desarrollo Integral de la Familia
Dr. Ricardo Camacho Sanciprián

Director General de Rehabilitación del Sistema Nacional para el Desarrollo Integral de la Familia
Dr. Onofre Muñoz Hernández

Comisionado Nacional de Arbitraje Médico
Dr. Sebastián García Saisío

Director General de Calidad y Educación en Salud
Dr. Adolfo Martínez Valle

Director General de Evaluación del Desempeño
Lic. Juan Carlos Reyes Oropesa

Director General de Información en Salud
Dr. Francisco Ramos Gómez

Director General del Centro Nacional de Excelencia Tecnológica en Salud
Dr. Alvaro Emilio Arceo Ortiz

Secretario de Salud y Director General del Instituto de Servicios Descentralizados de Salud Pública del Estado de Campeche
Dr. Jesús Pavel Plata Jarreto

Secretario de Salud y Director General de los Servicios de Salud en el Estado de Nayarit
Dr. Neftali Salvador Escobedo Zoletto

Secretario de Salud y Director General de los Servicios de Salud del Estado de Puebla
Dr. Enrique Luis Graue Wiechers

Presidente de la Academia Nacional de Medicina
Dr. Francisco Pascual Navarro Reynoso

Presidente de la Academia Mexicana de Cirugía
Dr. Arturo Perea Martínez

Presidente de la Academia Mexicana de Pediatría
Lic. José Ignacio Campillo García

Presidente Ejecutivo de la Fundación Mexicana para la Salud, A.C.
Dr. Ricardo León Bórquez M.C.A.

Presidente de la Asociación Mexicana de Facultades y Escuelas de Medicina, A.C.
Dr. Francisco Hernández Torres

Presidente de la Asociación Mexicana de Hospital, A.C.
Dr. Carlos Dueñas García

Presidente de la Asociación Nacional de Hospitales Privados, A.C.
Dr. Sigridt Rangel Frausto

Presidente de la Sociedad Mexicana de Calidad de Atención a la Salud
Dr. Jesús Ojino Sosa García

Director de Integración de Guías de Práctica Clínica

Presidente

Titolario

Titular y Suplente del presidente del CNGPC

Titular 2016-2017

Titular 2016-2017

Titular

Titular

Titular

Asesor Permanente

Asesor Permanente

Asesor Permanente

Asesor Permanente

Secretario Técnico